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Abstract

Markov chain Monte Carlo is the engine of modern Bayesian statistics, be-
ing used to approximate the posterior and derived quantities of interest. De-
spite this, the issue of how the output from a Markov chain is postprocessed
and reported is often overlooked. Convergence diagnostics can be used to
control bias via burn-in removal, but these do not account for (common)
situations where a limited computational budget engenders a bias-variance
trade-off. The aim of this article is to review state-of-the-art techniques for
postprocessing Markov chain output. Our review covers methods based on
discrepancy minimization, which directly address the bias-variance trade-
off, as well as general-purpose control variate methods for approximating
expected quantities of interest.
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Intractable
distribution:
a probability
distribution whose
density function is
provided up to an
unknown
proportionality
constant

1. INTRODUCTION

The Bayesian statistical framework is operational, in the sense that a user first elicits their a priori
belief and then updates their belief in light of data, in a way that is (at least in principle) uniquely
prescribed. This updating is codified by Bayes’ rule, which expresses parameters’ posterior prob-
ability density as being proportional to the product of a priori probability density and the data
likelihood. Certain combinations of a priori belief and likelihood are conjugate, meaning that the
posterior can be analytically computed. Outside of the conjugate setting, computational meth-
ods are required. The computational challenge, then, is to accurately approximate an intractable
probability distribution, meaning a distribution whose density function is available up to propor-
tionality, where the normalization constant is an intractable integral.

The majority of Bayesian analyses produce a posterior that is intractable, as indeed do other
statistical frameworks (such as generalized Bayesian inference; Bissiri et al. 2016). There has, ac-
cordingly, been extensive research into computational methods for approximating intractable dis-
tributions. The focus of this review is on Markov chain Monte Carlo (MCMC) methods, a large
class of computational methods which, for several decades now, have been considered among
the state of the art. Given an intractable distribution, one can typically find several methods in
the MCMC literature that can be applied. However, the effectiveness of a particular method is
not always easy to predict. Furthermore, once an MCMC method has been applied, it is not al-
ways easy to determine the quality of the approximation produced. Typical situations where these
challenges occur include applications of Bayesian statistics in which the parameter space is high
dimensional; applications in which the likelihood has high information content, causing the pos-
terior to present multiple modes or concentrate on manifolds; and settings where computational
complexity limits the number of evaluations of the likelihood (Brooks et al. 2011).

Postprocessing procedures aim to improve the quality of estimators that are based on MCMC
output, to approximate either the probability distribution itself or a derived quantity of interest.
The main practical requirement of a postprocessing procedure is that it should be agnostic to the
details of the MCMCmethod. The best-known examples of postprocessing procedures are burn-
in removal and thinning. In burn-in removal, one attempts to identify a number of iterations after
which the Markov chain can (informally) be said to have converged to the parameters posterior
distribution, and then removes the initial part of the output where the chain had not converged.
This procedure can reduce bias in the MCMC output by reducing the dependence on how the
MCMC was initialized, but it does not consider variance of the resulting estimators, which de-
pends on the sample size and thus may be large if most of the chain is removed. In thinning, every
kth iteration is retained and the remainder discarded, in order to reduce the positive correlation
between the remaining states and therefore reduce the asymptotic variance of the estimators. This
can facilitate compression of MCMC output but does not always improve the approximation that
is produced (notoriously, thinning does not lead to an efficiency gain if the samples are only used
to estimate the posterior expectation of an inexpensive function).

It is thus notable that postprocessing of MCMC engenders a bias-variance trade-off and yet
standard postprocessing procedures do not attempt to address this trade-off.

This review focuses on modern postprocessing techniques that can be applied to MCMC out-
put. Our discussion focuses on MCMC, for which consistency results have been established, but
much of what we discuss is amenable to application in other computational methods that produce
a collection of representative values as output, such as sequential Monte Carlo (Chopin 2002). To
limit scope, our focus is principally on continuous-valued random variables, rather than discrete
or categorical variables, but where possible we aim to keep discussion general. The article is struc-
tured as follows: Notation is established in Section 1.1, background on Markov chains is recalled
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Markov chain: an
ordered sequence of
random variables Xn,
such that Xn + 1 is
conditionally
independent of
(Xm)m < n given Xn

in Section 1.2, and a formal problem statement is provided in Section 1.3. Section 2 focuses on the
task of approximating the full probability distribution usingMCMCoutput; we recall the standard
approaches of burn-in removal and thinning before describing modern and powerful techniques
based on discrepancy minimization in detail. In Section 3 we focus on the task of approximating
one or more scalar quantities of interest. Control variate methods represent a powerful compu-
tational tool in this context, and we discuss the state of the art in control variate methodology in
detail. A brief discussion concludes in Section 4.

1.1. Notation

For this article we use (�,F ,P) to denote an underlying probability space on which all random
variables are (often implicitly) defined and we let E[ · ] = ∫ · dP. Conditional probabilities are de-
fined in the standard sense of Kolmogorov (1956) and denoted P(F |G), F ,G ∈ F . For this article
we introduce a measurable space (X ,B) and consider a random variable to be a measurable func-
tion X : � → X , whose distribution P is defined as P(B) := P(X ∈ B) for all B ∈ B, where the
conventional shorthand “X � B” is used for the event {ω ∈ � : X (ω) ∈ B} ∈ F . In the Bayesian
context, X represents the parameters of a statistical model and P represents the posterior dis-
tribution after data have been assimilated. Let L2(P) be the vector space of random variables
f : X → R with �f 2dP < ∞. Let δ(x) denote the distribution of the random variable f (ω) = x
for all ω � �. For a differentiable function f : Rd → R, we denote the gradient of f as �f where
(∇ f )(x) := (∂x1 f (x), . . . , ∂xd f (x))

T. For a differentiable function f : Rd → Rd , we denote the di-
vergence of f as � · f where (∇ · f )(x) := ∂x1 f1(x) + · · · + ∂xd fd (x), and if f is twice-differentiable,
we denote the Laplacian of f as �f where �f := � · (�f ). Natural numbers excluding zero are
denoted N and including zero are denoted N0. The vector of ones is denoted 1, the unit vector

(1, 0, . . . , 0)� is denoted e1, and ‖x‖ denotes the Euclidean distance
√
x21 + · · · + x2d .

1.2. Markov Chains

A Markov chain is a sequence (Xn )n∈N of random variables Xn : � → X with the property that
Xn + 1⊥⊥(Xm)m < n |Xn, where X⊥⊥Y |Z indicates that the random variables X and Y are condition-
ally independent given the random variable Z.

In this article we assume a nonrandom initial state X0 ∈ X . To a Markov chain we can as-
sociate a sequence of transition kernels Pn(x,B) := P(Xn ∈ B|Xn−1 = x), x ∈ X , B ∈ B, so that
Pn(x, B) represents the probability that the state Xn of the Markov chain takes a value in the set
B, given that the previous state Xn − 1 was equal to x. The chain is said to be time-homogeneous
if Pn does not depend on n. Inductively define the nth step transition kernel as P n(x, B) := �Pn(y,
B)P n − 1(x, dy), x ∈ X , B ∈ B, with base case P 0(x, B) = 1 if x � B, and 0 if x � B. That is, P n(x, B)
represents the probability that the state Xn of the Markov chain takes a value in the set B, given
that the initial state X0 was equal to x. A Markov chain is said to be P-invariant if �P n(x, B)dP(x)
= P(B) for all n and all B ∈ B. Intuitively, if one was to randomize the initial state X0 by sampling
it from P, then the state Xn will also have distribution P if the Markov chain is P-invariant.

Loosely speaking, a P-invariant Markov chain might be described as ergodic if P n(x, B) ap-
proximates P(B) in the n→ ∞ limit, for all x ∈ X , B ∈ B. Several notions of ergodicity exist in the
literature, but in this article we focus on a specific notion called V-uniform ergodicity, which will
now be defined. For a functionV : X → [1,∞), a function f : X → R and a measureQ on (X ,B),
we denote ‖ f ‖V := supx∈X | f (x)|/V (x), ‖Q‖V := sup‖ f ‖V ≤1 | ∫ f dQ|. A Markov chain is said to be
V-uniformly ergodic if there exist constants R � [0, ∞), ρ � [0, 1), such that ‖P n(x, ·) − P‖V ≤
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Markov chain Monte
Carlo (MCMC): an
MCMC method is an
algorithm that, given a
distribution Q,
constructs a Markov
chain that is
Q-invariant

MCMC output:
a single realization (or
sample path) of a
Markov chain, of
which the first N states
are provided

RV(x)ρn for all n ∈ N and all x ∈ X . A comprehensive treatment of Markov chains can be found
in the textbook of Meyn & Tweedie (2012).

1.3. Problem Statement

Consider an intractable probability distribution P.Our aim is to compute an approximation, either
to the distribution P itself (Section 2) or to derived scalar quantities of interest (Section 3). Our
starting point is one1 realization (i.e., based on one random seedω ∼ P), of a finite portion (Xn)n ≤ N

of the Markov chain,2 which we call the MCMC output. It is not assumed that the Markov chain
is P-invariant unless stated, and later we discuss how output from an MCMC method that is Q-
invariant may nevertheless enable P to be consistently approximated ifQ is not too dissimilar to P.
All approximations are to be constructed by postprocessing the MCMC output. In other words,
we may only consider properties of P defined locally at the states Xn and no further exploration
of X outside this finite set is permitted. In particular, we exclude the trivial solutions of simply
running further iterations of MCMC or adopting a different, possibly better MCMC method.
This setup is realistic, reflecting the scenario that a practitioner has invested considerable resources
into producingMCMCoutput and wishes to employ postprocessing techniques to extract as much
value as possible from their investment.

An important preliminary comment is that the postprocessing techniques described in this ar-
ticle (and, indeed, most MCMC methods) are not parameterization invariant. This means that, if
one were to apply an invertible transformation Yn = y(Xn), then postprocessing of theMCMCout-
put (Yn)n ≤ N can lead to different conclusions compared with if (Xn)n ≤ N had been postprocessed.
To limit scope we do not discuss parameterization in this article. Instead, following standard prac-
tice, we presuppose that one has employed transformation(s), such as centering and scaling (Yu
& Meng 2011), that (loosely speaking) promote simplicity, in order that P can be more easily
approximated.

2. APPROXIMATION OF THE POSTERIOR DISTRIBUTION

The outcome of an exploratory Bayesian analysis is the posterior distribution itself, expressing
a posteriori belief about unknown parameters on the basis of a priori belief and evidence pro-
vided by the dataset. To facilitate exploratory Bayesian analysis outside the conjugate setting, it is
therefore important that the entire posterior distribution can be accurately approximated. This
section studies how MCMC output can be used to produce an approximation to a distribution P
of interest. Throughout, we consider approximations of the form

M∑
i=1

wiδ(Xπ (i) ), 1.

where w1, . . . ,wM ∈ R are weights satisfying
∑M

i=1 wi = 1 and π : {1, . . . , M} → {1, . . . , N} is a
function that indicates which states from the MCMC output are included in Equation 1. In sim-
ple terms, this approximation extracts and reweights a subsequence of length M from the given
MCMC output of length N.

1In general applications it is common to exploit multi-core central processing units to simulate independent
Markov chains in parallel. However, in the most challenging applications (where postprocessing is most im-
portant), it is common to have access to only one MCMC output. This article considers postprocessing of one
MCMC output, but many of the methods we discuss can be trivially applied to aggregated MCMC output.
2To limit scope, so-called adaptive MCMC, which aims to identify a suitable Markov transition kernel on the
fly, is not discussed. However, most of our presentation applies also to adaptive MCMC output.
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Postprocessing
MCMC output:
selecting a weighted
combination of states
from the MCMC
output to better
represent the posterior
distribution P

Burn-in: the first b
states of a P-invariant
Markov chain, for
which the distribution
of Xn, n ≤ b, is deemed
to substantially differ
from P

Recall the two categories of postprocessing discussed in Section 1. First, if the chain is con-
structed so that its asymptotic law converges to P, then excluding the first b points (the burn-in
period) from Equation 1 may help to reduce bias due to the choice of the initial state X0 of the
Markov chain. This corresponds to excluding {1, . . . , b} from the image of π , and we discuss stan-
dard approaches to this problem in Section 2.1. Second, thinning of MCMC output can be useful
when samples are to be used for further computation, especially when the subsequent computa-
tion has a high cost. This corresponds to excluding i from the image of π whenever i 
= 1 modulo
k, and we briefly discuss approaches to thinning in Section 2.3. In both cases, uniform weights
wi = 1

M are assumed in Equation 1.

2.1. Burn-In Removal

In this section we discuss standard approaches to identification of a burn-in period from given
MCMC output, in order to control the bias resulting from an arbitrary choice of initial state X0

for the Markov chain. Our focus is limited to continuous domains X ⊆ Rd . Rigorous approaches
for selecting a burn-in period b have been proposed by authors includingMeyn &Tweedie (1994),
Rosenthal (1995), and Roberts & Tweedie (1999) (see also Jones & Hobert 2001). Unfortunately,
these often involve conditions that are difficult to establish or, when they hold, they may provide
loose bounds on the total variation distance between the law of theMarkov chain and the invariant
distribution, implying an unreasonably long burn-in period. More recently Biswas et al. (2019)
discuss how to estimate such bounds through coupling and multiple MCMC runs, but this is out
of the scope considered here, where a single MCMC run has been obtained at moderate to high
computing cost. Convergence diagnostics have emerged as a practical solution to the need to test
for nonconvergence of MCMC. Their use is limited to reducing bias in MCMC output; they are
not designed for the setting that we consider, where the length N of the MCMC output is fixed,
and which requires a bias-variance trade-off.Nevertheless, convergence diagnostics constitute the
most common means by which MCMC output is postprocessed in modern software packages for
MCMC, includingWinBUGS (Lunn et al. 2000), JAGS (Plummer 2003), R (R Core Team 2020),
Stan (Carpenter et al. 2017), and PyMC3 (Salvatier et al. 2016).

In this section we recall standard practice for selection of a burn-in period b, and thus (implic-
itly) in constructing an estimator of the form in Equation 1, focusing on the traditional R̂ statistic
of Gelman & Rubin (1992) and Brooks & Gelman (1998). The aim of this section is to describe
the general idea and fundamental limitations of convergence diagnostics in the fixed N scenario,
rather than presenting the state of the art or providing a comprehensive survey of convergence
diagnostics for burn-in removal. We simply recall that the R̂ convergence diagnostic was first in-
troduced by Gelman & Rubin (1992) and subsequently corrected by Brooks & Gelman (1998),
and this was then simplified by Gelman et al. (2003).We use the implementation of the Brooks &
Gelman (1998) version from the R package coda in our experiments, and we focus on the simple
expression of Gelman et al. (2003) in the text. Further developments of the R̂ convergence diag-
nostic include those of Gelman et al. (2013), where the diagnostic test is performed separately on
each half of the MCMC output; Vats & Knudson (2018), which revisits a connection between R̂
and effective sample size3 of quantities of interest estimated from the MCMC output; and Vehtari
et al. (2021), which provides more details on such connections, addressing also target distributions

3The effective sample size indicates how many independent samples are needed to provide the same amount
of information about that quantity of interest as the correlated MCMC output: The higher this value, the
lower the loss of information due to correlation in the MCMC output.
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Sample mean: the
sample mean ml of an
MCMC output
(X l

n )n≤N is defined as
1
N
∑N

n=1 X
l
n

Sample variance: the
sample variance s2l of
an MCMC output
(X l

n )n≤N is defined as
1

N−1
∑N

n=1(X
l
n −ml )2

with infinite variance, and the case in which the Markov chain is exploring the bulk of the target
distribution, but not its tails. A comprehensive survey of convergence diagnostics for MCMC is
provided by Roy (2020).

The traditional R̂ statistic of Gelman et al. (2003) is not a postprocessing method in the strict
sense set out in Section 1.3 because it is based on l= 1, . . . , L independent realizations of MCMC
output, (X l

n )n≤N ; i.e.,X
l
n denotes the random variable Xn evaluated at ωl, where ω1, . . . ,ωL ∼ P are

independent. For a uni-dimensional target distribution, the traditional R̂ statistic is defined as the
square root of the ratio of two estimators of the variance σ 2 of the target:

R̂ :=
√

σ̂ 2

s2
,

where s2 is the (arithmetic) mean of the sample variances s2l along the L sample paths (X l
n )n≤N ,

and it typically provides an underestimate of σ 2. Meanwhile, σ̂ 2 is constructed as an unbiased
overestimate of the target variance

σ̂ 2 := N − 1
N

s2 + 1
L− 1

L∑
l=1

(
ml − 1

L

L∑
l ′=1

ml

)2
,

where ml is the sample mean from the lth sample path, and where the second term is the sample
variance of the sample means from L chains.

For an ergodic Markov chain, R̂ converges to 1 asN→ ∞. In practice, it is common to discard
a burn-in period of length b = N, where N is the smallest integer for which R̂ < 1 + δ, and δ is a
suitable threshold.4 The somewhat arbitrary choice of δ = 0.1 has historically been used (Gelman
et al. 2013), and current best practice for traditional R̂ and its extensions advocates δ = 0.01 (Vehtari
et al. 2021).

Convergence diagnostics can help to detect situations in which a Markov chain has not con-
verged, and for this purpose they are widely used. Their main drawbacks are that (a) such diagnos-
tics do not provide guarantees that theMarkov chain has actually converged (existing convergence
diagnostics can assess only necessary but not sufficient conditions for convergence), and (b) burn-
in removal may not be useful in practical settings where the MCMC output has already been
obtained and postprocessing is required, as described in Section 1.3. In order to mitigate the first
point, Vats & Knudson (2018) and Vehtari et al. (2021) recommend to look at the effective sam-
ple size of quantities of interest, if possible combining autocorrelation information from multiple
chains, which helps to detect poor convergence in cases of multimodal target distributions. How-
ever, this still remains only a necessary, not sufficient, condition for convergence, and it does not
help tackling the second point. This section ends with an example to highlight this important
second drawback of convergence diagnostics:

Example 1 (Burn-in removal lacks a bias-variance trade-off ). The purpose of convergence
diagnostics is to detect and avoid bias due to dependence on the arbitrary choice of initial state
X0.However, burn-in removal does not address the bias-variance trade-off that occurs when the
MCMC output is fixed. As an extreme illustration of this, consider the MCMC output shown in
Figure 1. Here, L = 6 independent sample paths of total length N = 103 were produced using
random walk Metropolis–Hastings (Metropolis et al. 1953). A simple bivariate target P, whose
contour lines are plotted in red, was used, but the Markov chain was not optimized, to simulate

4Although seeking the smallest N is not an explicit recommendation in the literature cited, it is clear that one
would not want to simulate a Markov chain for longer than required. Thus, in effect, it is standard practice to
work with N as small as possible, subject to the diagnostic test being passed.
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Figure 1

MCMC output. Here we show L = 6 independent realizations of MCMC output (gray lines) for a particular
bivariate distributional target P indicated by the shaded contour plot in the background. In each case a total
of N = 103 iterations of the Markov chain were performed, with the first 500 iterations plotted.
Abbreviation: MCMC,Markov chain Monte Carlo.

a challenging sampling context. The initial states X l
0 were overdispersed relative to the target P,

requiring the Markov chain to take several steps before the high-probability region is reached.
Figure 2 applies convergence diagnostics to establish whether or not the Markov chains can be
said to have converged.

The traditional R̂ statistic of Brooks & Gelman (1998) detects nonconvergence even after
all N = 103 iterations of the MCMC output have been considered, irrespective of whether
the diagnostics are applied to each coordinate of the state vector or jointly to both coordinates.
This is undesirable from our perspective of postprocessingMCMC output, since it is clear from
Figure 1 that there is useful information in the MCMC output, even if some dependence on
X0 can be detected. In addition, we present in Figure 2 two of many proposed improvements
over Brooks & Gelman (1998): the recent diagnostic due to Vats & Knudson (2018) and also
a version of such convergence diagnostic presented in the same work, which can be computed
using a single MCMC output. They indicate that the burn-in period has finished, but they leave
only a small portion of the chain after the burn-in, when considering the threshold δ = 0.01.
All convergence diagnostics were computed using the R packages coda (Plummer et al. 2006)
and stableGR (Knudson & Vats 2020).

The modern MCMC postprocessing techniques presented in Section 2.3 address this bias-
variance trade-off, and their use is encouraged in problems where obtaining further MCMC
iterations is not practical.

2.2. Fixed Frequency Thinning

As with the classical approaches to burn-in removal discussed in Section 2.1, thinning is often
performed on a heuristic basis as the simplest way to achieve compression of MCMC output. In
exploratory Bayesian analysis, this is often motivated by the need to reduce storage cost or to
make subsequent computation faster (the reader can, for example, think about the case in which
the samples obtained from the posterior are used for forward uncertainty propagation in complex
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Discrepancy:
a discrepancy D is a
nonnegative function
where D(P,Q) is
interpreted as the
dissimilarity between
measures P and Q

BG, L = 6

VK, L = 6

VK, L = 1

δ = 0.1δ = 0.1

δ = 0.01δ = 0.01

103102101

101

100

10–1

10–2

10–3

Number of iterations, N
103102101

Number of iterations, N
103102101

Number of iterations, N

R̂−
1

Coordinate 1 Coordinate 2 Both coordinates

Figure 2

Convergence diagnostics for the Markov chain Monte Carlo (MCMC) output shown in Figure 1. Here we show the traditional R̂
statistic of Brooks & Gelman (1998) (BG; gray solid lines) and also an autocorrelation-based diagnostic used by Vats & Knudson (2018)
(VK; blue and red solid lines), each as a function of the number of iterations N of the Markov chain that are considered. The blue lines
indicate the Vats & Knudson (2018) diagnostic, and the red lines indicate a version of the diagnostic that can be computed using a
single MCMC output. These diagnostics were applied separately to the first and second coordinates of the bivariate state variable (left,
center panels) and jointly to both coordinates (right panel). Dashed lines indicate thresholds at which convergence is deemed to have
occurred. In all cases, the traditional R̂ statistic does not fall below the thresholds, indicating that convergence has not occurred.

multi-scale models).However, thinning is traditionally performed with no specific aim to improve
the accuracy of the MCMC output.

The most common approach to thinning is to subsample with a fixed frequency from the chain
(retain every kth sample and discard the rest), which can be an effective strategy to reduce auto-
correlation in the MCMC output. Systematic approaches for determining k do exist, and the most
well-known is based on the autocorrelation estimator of Geyer (1992), which can be computed
using the R package LaplacesDemon (Statisticat LLC 2021). This method estimates a sequence of
fixed-lag autocorrelations in the Markov chain and then thresholds this sequence to give a k that
results in a subsample that is close to uncorrelated. This procedure is most useful in exploratory
Bayesian analysis, where a set of such samples are themselves required, rather than as an attempt
to improve an estimator. Owen (2017) provides a discussion on the statistical efficiency of this
approach.

More sophisticated approaches to compress MCMC have been explored by authors including
Paige et al. (2016) and Mak & Joseph (2018). In both cases, the authors aimed to construct an
approximation of the form in Equation 1 withM� N, such that Equation 1 provides an accurate
approximation to the discrete distribution 1

N

∑N
n=1 δ(Xn ) supported on the original MCMC out-

put. Although these can provide effective compression of MCMC output, if the Markov chain has
not converged then the compressed output will be biased. In the next section, we discuss an ap-
proach that is simultaneously capable of thinning and debiasing MCMC output and is applicable
even in cases where the Markov chain is not P-invariant.

2.3. Discrepancy Minimization

Here, we discuss modern and powerful approaches to postprocessing of MCMC that aim to di-
rectly address the bias-variance trade-off just described. The approach we explore casts the choice
of π in Equation 1 as an optimization problem.The key idea is to identify an appropriate quantifi-
cation of the discrepancy between the discrete distributionQM in Equation 1 and the distributional
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Convergence
control: a discrepancy
D is said to have
convergence control if
D(P,QM) → 0 implies
QM converges to P in a
sense that must be
specified

Stein discrepancy:
a discrepancy D such
that D(P,Q) can be
computed when P is an
intractable distribution
and Q has a finite
support

Stein thinning:
an algorithm that thins
MCMC output such
that the Stein
discrepancy between
resulting empirical
distribution and target
distribution is
minimized

target P, and then to select both the weights wi and the index sequence π so that this discrepancy
is minimized. A discrepancy is defined as a bivariate function D such that D(P, P) = 0 for all
distributions P, and D(P, Q) > 0 for all P 
= Q. There are an infinitude of functions D that satisfy
these relations, so for a discrepancy to be useful we typically require several other properties. An
important property, which we do not discuss further in this article since it is often satisfied, is that
D(P,QM) → 0 whenever QM converges to P in an appropriate sense. Another important property,
which is the converse of the property just described and which we do discuss, is called convergence
control, where D(P,QM) → 0 implies that QM converges to P in a sense that must be specified.

As an aside, we note that many related strands of work exploit discrepancy to approximate a
distributional target P by a discrete distribution QN. For example, in quasi–Monte Carlo, an ex-
plicit constructionQN = 1

N

∑N
n=1 δ(xn ) is sought to approximate P in such a way that a discrepancy

D(P, QN) is provably asymptotically minimized (Hickernell 1998, Dick & Pillichshammer 2010).
In a different direction, other researchers have implicitly constructed point sets by performing
direct minimization ofD(P,QN) over the high-dimensional joint space (x1, . . . , xN ) ∈ XN (see the
surveys by Briol et al. 2017, 2019; Oettershagen 2017; Pronzato & Zhigljavsky 2020). In both of
these methods the goal is to find a compressed representation of P, and as a starting point it is
assumed that P is known in full. This is not the case when one has to postprocess MCMC output.
An approach considered by Kyriazopoulou-Panagiotopoulou et al. (2008) and Kontoyiannis &
Meyn (2008) is to adjust estimates based on the discrepancy between the expectation under P and
the expectation under QN of a reference function, although this discrepancy is not convergence-
determining for a finite number of reference functions. To overcome these problems, a specialized
family of discrepancies are required, and these are introduced next.

2.3.1. Stein discrepancy minimization. Our aim is to select an appropriate discrepancy D for
postprocessing of MCMC. To this end, we focus on Stein discrepancy, and in particular a kernel
Stein discrepancy constructed for the case where the domain X is Rd (see the sidebars titled Stein
Discrepancy, Tail Condition for Stein Discrepancy, and Kernel Stein Discrepancy for definitions
and detail). The main computational requirement when using Stein discrepancy is the evalua-
tion of the gradient �log p along the MCMC sample path, where p is a density function for P.
Note that gradient-based samplers, such as the Metropolis-adjusted Langevin algorithm (Roberts
& Stramer 2002) or Hamiltonian Monte Carlo (Duane et al. 1987), produce the required evalua-
tions as a byproduct. Stein discrepancy is particularly well suited to postprocessing of suchMCMC
output since, under appropriate technical assumptions, it (a) allows explicit computation of
D(P,QM) and (b) provides convergence control,meaning in this context thatD(P,QM)→ 0 implies
QM converges weakly to P.

The optimization problem we are interested in thus reduces to the problem of identifying
weights wi and an index sequence π for which the kernel Stein discrepancy D(P, QM) is mini-
mized when QM is the discrete distribution in Equation 1. Approaches based on Stein discrepancy
minimization include black-box importance sampling (Liu & Lee 2017, Hodgkinson et al. 2020),
Stein points (Chen et al. 2018, 2019), and Stein thinning (Riabiz et al. 2021). In what follows we
describe the Stein thinning approach of Riabiz et al. (2021), illustrated in Figure 3 in the setting
with equal weights wi = 1

M , and defer to Liu & Lee (2017), Hodgkinson et al. (2020), and Riabiz
et al. (2021) for discussion of the case in which weights are not equal.

Combinatorial optimization to elicit an index sequence π for which the kernel Stein discrep-
ancyD(P,QM) is minimized presents some technical challenges, which we defer discussion of until
Section 2.3.2. Here we describe the simple, sequential approach called Stein thinning that was ex-
plored by Riabiz et al. (2021). This involves constructing π in a sequential, greedy manner, in
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STEIN DISCREPANCY

A Stein discrepancy is a discrepancy of the form

D(P,Q) = sup
f ∈FP

∣∣∣∣∫ f dQ
∣∣∣∣ , 2.

where FP is a set of functions chosen to satisfy �fdP = 0. For a sufficiently large set FP, it is possible to have
D(P, Q) = 0 imply P = Q. One way of achieving this is by taking FP to be the set of functions of the form
f (x) = h(x) − �hdP, with h ranging over a measure-determining set H (such a D is recognized as an integral prob-
ability metric; see Müller 1997). However, for intractable P the presence of the integral �hdP renders this choice
impractical.

Building on Stein (1972), the recent work of Gorham & Mackey (2015) proposed an alternative approach that
can be applied provided that P admits a positive and differentiable density on X = Rd . Let the set FP be composed
of functions of the form

f (x) = (APh)(x) := (∇ · h)(x) + (∇ log p)(x) · h(x), 3.

where h ranges over a sufficiently large setH of differentiable functions h : Rd → Rd . The differential operator AP

is called a Stein operator, and the set FP is called a Stein set. Under a particular tail condition on h (see the sidebar
titled Tail Condition for Stein Discrepancy) it can be shown that �fdP = 0. With further regularity assumptions,
it can be shown that such a Stein discrepancy can enjoy either Wasserstein convergence control (see Gorham &
Mackey 2015, theorem 2) or weak convergence control (see Gorham & Mackey 2017, theorem 8), depending on
how the set H is selected. Alternative Stein operators are also possible (see Gorham et al. 2019).

which at iteration 1 ≤ j ≤ M, an index π (j) is selected according to

π ( j) ∈ argmin
i∈{1,...,N}

D

⎛⎝P, 1
j

⎡⎣δ(Xi ) +
j−1∑
j′=1

δ(Xπ ( j′ ) )

⎤⎦⎞⎠ 5.

TAIL CONDITION FOR STEIN DISCREPANCY

To construct a Stein discrepancy, we require a set of functions h : Rd → Rd for which the Stein identity
∫
(APh)dP =

0 holds,withAP defined in Equation 3.This can be formulated as a tail condition on h.Themain idea is to recognize
APh as a divergence operator and exploit the divergence theorem over a ball B(r) of radius r > 0, centered at the
origin in Rd : ∫

(APh)dP =
∫

1
p
∇ · (ph)dP =

∫
∇ · (ph)dV = lim

r→∞

∮
B(r)

ph · ndσ.

Here, dV denotes the volume element in B(r), dσ denotes the surface area element on the boundary of B(r), and n
denotes the unit normal to the boundary of B(r). In order for this final term to vanish, it is sufficient that ‖ph · n‖
vanishes uniformly with respect to the surface area �B(r)dσ , which is O(rd). Thus, if h : Rd → Rd and log p : Rd → R

are both continuously differentiable and the tail condition

‖h(x)‖ ≤ C‖x‖−δ p(x)−1 4.

is satisfied for someC ∈ R, some δ > d− 1, and all x ∈ Rd outside of a bounded set, then the Stein identity is satisfied
(South et al. 2021).
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KERNEL STEIN DISCREPANCY

To facilitate computation of the supremum in Equation 2, one can specialize to a particular form of Stein discrep-
ancy called kernel Stein discrepancy. A kernel is a symmetric, positive-definite function k : X × X → R. A kernel k
reproduces a Hilbert space, denotedH(k), whose inner product is denoted 〈·, ·〉H(k). This means that the elements of
H(k) are functions f : X → R, and it holds that (a) k(·, x) ∈ H(k) for all x ∈ X and (b) 〈 f , k(·, x)〉H(k) = f (x) for all
x ∈ X , f ∈ H(k). For example, the Gaussian kernel k(x, y) = exp(−(x− y)2) reproduces a Hilbert space that contains
functions of the form f (x) =∑m

i=1 wi exp(−(x− yi )2) for all wi ∈ R, yi ∈ R,m ∈ N, as well as certain limits of such
functions (Berlinet & Thomas-Agnan 2011).

The main observation here is that if we take the set H := {h : Rd → Rd :
∑d

i=1〈hi, hi〉H(k) ≤ 1}, then the supre-
mum in Equation 2 can be exactly evaluated. Let H(k)d := H(k) × · · · × H(k) denote the Cartesian product; i.e.,
the elements of H(k)d are functions h : X → Rd with components hi ∈ H(k). Then, Oates et al. (2017, theorem 1)
showed that the set of functions of the form APh, h ∈ H(k)d is a Hilbert space reproduced by the kernel

kP (x, y) := ∇x · ∇yk(x, y) + ∇xk(x, y) · u(y) + ∇yk(x, y) · u(x) + k(x, y)u(x) · u(y),

where u(x) := �log p(x). Assuming that, for each APh, h ∈ H(k)d , the tail condition Equation 4 is satisfied, then
following Liu et al. (2016) and Chwialkowski et al. (2016), one can show that

D

(
P,

n∑
i=1

wiδ(xi )

)2
=

n∑
i=1

n∑
j=1

wiw jkP (xi, x j )

for all wi ∈ R, xi ∈ Rd , n ∈ N. The kernel Stein discrepancy in this equation can therefore be exactly computed
whenever the gradient�log p can be evaluated. Furthermore, under certain conditions, the kernel Stein discrepancy
provides weak convergence control (Gorham & Mackey 2017, theorem 8).

or, equivalently, using the explicit form of kernel Stein discrepancy in the second equation in the
sidebar titled Kernel Stein Discrepancy,

π ( j) ∈ argmin
i∈{1,...,N}

kP (Xi,Xi )
2

+
j−1∑
j′=1

kP (Xπ ( j′ ),Xi ). 6.

This procedure has computational complexity O(NM2), or possibly less (since it is possible for a
state to be repeatedly selected and the relevant quantities to be cached).

The main conceptual advantages of Stein thinning and related algorithms, compared with the
standard postprocessing techniques described in Sections 2.1 and 2.2, are that (a) they directly
address the bias-variance trade-off, (b) they can correct for systematic bias in the MCMC output,
and (c) they can automatically identify and remove a burn-in period. The main practical limitation
of Stein thinning and related algorithms is that there are certain pathologies of Stein discrepancy,
which occur when either (a) P has distant high-probability regions or (b) P is high-dimensional
(e.g., d > 100), either of which can lead to poor approximations when M is small (see Wenliang
2020). To illustrate the potential advantages of Stein thinning, we now present a special case of
theorem 3 of Riabiz et al. (2021), which describes conditions under which the sequence generated
using the Stein thinning algorithm in Equation 6 produces a discrete approximation QM that
converges almost surely to P. Note in particular that the result does not assume that the Markov
chain is P-invariant.
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Figure 3

Postprocessing of MCMC output via Stein thinning. Here, a Markov chain sample path (gray line) is
postprocessed to selectM = 12 representative states (black circles), such that the discrete measure supported
on these representative states provides an accurate approximation to the same distributional target P as in
Figure 1, indicated by the shaded contour plot in the background.

Theorem 1 (Bias correction forMCMC). Let P and P′ be probability distributions with pos-
itive and continuous densities p and p′ on Rd . Assume that the tails of P are distantly dissipative
(a relaxation of log concavity; see Gorham et al. 2019) and that p is continuously differentiable
on Rd . Consider a P′-invariant, time-homogeneous Markov chain (Xi )i∈N generated using a
V-uniformly ergodic transition kernel, where V (x) = p(x)

p′ (x)
√
d + ‖∇ log p‖2. Suppose that, for

some γ > 0, the following moment condition is satisfied:

sup
i∈N

E

[
exp
(

γ max
(
1, p(Xi )

p′ (Xi )

)2 (
d + ‖∇ log p(Xi )‖2

))]
< ∞. 7.

Let π be an index sequence of length m produced by Equation 6 applied to the MCMC output
(Xn)n ≤ N, where kP in the first equation in the sidebar titled Kernel Stein Discrepancy is based
on the inverse multi-quadric kernel k(x, y) = (1 + ‖x − y‖2)−1/2. If M ≤ N and the growth
of N is limited to at most log (N) = O(Mβ/2) for some β < 1, then, P-almost surely, QM =
1
M
∑M

j=1 δ(Xπ ( j) ) converges weakly to P asM,N → ∞.

This result, and the related results in Liu&Lee (2017) andHodgkinson et al. (2020),weaken or
remove the requirement to design Markov chains that are exactly P-invariant (see also Gramacy
et al. 2010, Radivojević & Akhmatskaya 2020). Less formally, this result suggests that one may
not need to run a Markov chain to convergence in order for its output to be useful. That said,
the moment condition in Equation 7 imposes a requirement that P′ cannot be too dissimilar to P
(informally, the Markov chain must explore the high-density regions of P, albeit not necessarily
with the same frequencies as would be expected if the chain was P-invariant).This is a recent line of
research, so it remains to be seen whether these advances in the postprocessing of MCMC output
will in turn influence the design of algorithms for MCMC. Software to perform Stein thinning,
including packages for R, Python, and MATLAB, is available at http://stein-thinning.org/.

2.3.2. Extensions to Stein discrepancy minimization. The Stein thinning algorithm that we
just described in Equation 6 is myopic, in that it selects the index of the single best state π (j) at
each iteration without consideration of whether this makes subsequent choices better or worse
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Nonmyopic:
an optimization
algorithm is
nonmyopic if it looks
further than a single
step ahead when
deciding the best
course of action at a
given iteration

Mini-batch: an
approach in which the
set of candidate
samples is parceled up
and the selection
algorithm is applied
separately to subsets

1
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1

1

1

1

1

11

1
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1

1

Figure 4

Extensions to Stein thinning. Here, the sample path (gray line in Figure 3) is postprocessed to selectM = 12 representative states (black
circles) to provide an approximation to the distributional target P, indicated by the shaded contour plot in the background. (Left) Myopic
selection of states (look-ahead horizon s = 1). (Center) Nonmyopic selection of states, with a look-ahead horizon of s = 4. (Right)
Nonmyopic selection of states, with a look-ahead horizon of s = 12. Integers indicate the iteration of the algorithm in which a given
state was selected.

overall. This myopia can make the optimization statistically inefficient, as observed in Figure 4
(left panel). Specifically, we see that the choice of the first state as the sample closest to the global
mode of the distribution means that all possible choices for the second state will (temporarily)
significantly worsen the overall approximation. In a less extreme fashion, this can also be seen for
state 6, and state 8, by similar symmetry observations. A second shortcoming of the algorithm
we just presented is that it requires scanning through the entire MCMC output of size N at each
iteration, which can lead to an unacceptable computational cost.

To ameliorate these shortcomings, at least to an extent, the Stein thinning algorithm can be
generalized to both nonmyopic and mini-batch settings, as described by Teymur et al. (2021). The
first of these extensions involves selectingmultiple points simultaneously,while themini-batch ex-
tension considers, at each iteration, selecting points from a random subset of the samples along
the MCMC path. Teymur et al. (2021) showed that these two extensions are synergistic, in that
nonmyopic optimization is most useful in the mini-batch context. These extensions of Stein thin-
ning are now described. Let B � N be a mini-batch size and let (X j

b )1≤b≤B,1≤ j≤M be the collection
of mini-batches, each of size B and to be used at iteration j. For example, the mini-batches could
be chosen uniformly, with or without replacement, from the MCMC output (Xn)n ≤ N. Let s ∈ N

be the look-ahead horizon, meaning the number of points to be simultaneously selected (the al-
gorithm in Equation 6 corresponds to s = 1). Then, we choose a vector π (j, ·) of s indices to be
used at iteration j by performing the optimization

π ( j, ·) ∈ argmin
S∈{1,...,B}s

[
1
2

∑
b,b′∈S

kP (X
j
b ,X

j
b′ ) +

j−1∑
j′=1

s∑
b=1

∑
b′∈S

kP
(
X j′

π ( j′ ,b),X
j
b′
)]
, 8.

which we have obtained using the explicit form of kernel Stein discrepancy in the second equa-
tion in the sidebar titled Kernel Stein Discrepancy, in a similar manner to how we obtained
Equation 6. Run for M iterations, this algorithm selects a representative set of sM states, poten-
tially with some states selected more than once. It is possible to apply a similar theoretical analysis
to that in Section 2.3.1 to the generalized algorithm in Equation 8 (see Teymur et al. 2021).

Implementation of this nonmyopic algorithm requires solving the optimization problem in
Equation 8. This is a potentially challenging combinatorial optimization problem and is only
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Integer quadratic
program: an
optimization problem
in which the objective
function is quadratic
and where the
solutions are
constrained to be
integer-valued

NP-hard: a class of
problems that,
informally, cannot be
solved in polynomial
time

tractable when the batch size B is small (e.g.,B≤ 1,000). In order to solve it, one can represent the
indices S	 { 1, . . . , B}s of the s points to be selected at iteration j as a vector v j ∈ Ns

0 := {0, . . . , s}B
whose ith element indicates the number of copies of X j

i that are selected from the jth mini-batch,
where vj is constrained to satisfy

∑B
i=1 v

j
i = s. It is then an algebraic exercise to recast an optimal

index sequence π ( j, ·) as the solution to a constrained integer quadratic program (e.g., Wolsey
2020):

argmin
v j∈Ns0

1
2
v j�K j

Pv
j + c j�v j such that 1Tv j = s,

[K j
P]i,i′ := kP (X

j
i ,X

j
i′ ), c ji :=

i−1∑
i′=1

s∑
j′=1

kP (Xπ (i′ , j′ ),Xj ).
9.

Depending on the values of B,M, andN, and the way in which the mini-batches are selected, it
may be advantageous to store and reuse kernel calculations from iteration to iteration. In general,
however, we assume that the matrix K j

P and vector c j are recalculated for each batch, giving the al-
gorithm an overall complexity ofO(M2s2Bs ). This apparently daunting computational complexity
can nevertheless be advantageous if N is very large and B � N. Teymur et al. (2021) recommends
a ratio s/B ≈ 10, though this is expected to be problem dependent. Finding the exact solution
of this type of optimization problem is NP-hard, where NP stands for nondeterministic polyno-
mial time.5 However, a good feasible solution may still be useful. Indeed, the iterative nature of
the overall algorithm allows it to compensate, to a degree, for suboptimal selection of states at
a given iteration through its selection of states in future iterations. Fortunately, good solutions
can readily be obtained using any of a number of packaged discrete optimization routines, such
as the commercial software Gurobi, MOSEK, and MATLAB’s Optimization Toolbox, or numer-
ous open-source equivalents.

2.4. Summary

This completes our review of postprocessing strategies for MCMC, when the aim is to accurately
approximate the distributional target P itself. Given that convergence diagnostics and thinning
are well-known techniques, we deliberately focused on their shortcomings in this review. Then,
we described recent methodology that aims to directly address the bias-variance trade-off that
occurs when postprocessing MCMC output. This trade-off is fundamental to many important
and challenging applications of MCMC, in which there is a practical limit to the computational
budget. To limit scope, we do not discuss alternative classes of algorithm, such as unbiased Monte
Carlo ( Jacob et al. 2020), for which a bias-variance trade-off is systematically avoided. Finally, we
argued that recent developments in Stein discrepancy have the potential to substantially impact
both applications of, and research into, MCMC.

3. APPROXIMATION OF POSTERIOR EXPECTATIONS

In contrast to exploratory Bayesian analyses, several applications of Bayesian statistics require just a
finite number of scalar posterior quantities of interest. For example, in a decision-making context,
Bayes’ rule may take an explicit and simple form, such as the mean of the posterior, or perhaps
a median, or a higher moment (Berger 2013). To proceed, one can first run MCMC, followed

5Without the cardinality constraint 1Tv j = s, this integer quadratic program is equivalent to the celebrated
Max-Cut problem, and with this constraint to the related cardinality constrained k-partition problem (Rendl
2016).
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by suitable postprocessing as described in Section 2, to obtain an approximation to the posterior
from which quantities of interest can be extracted. However, approximating the full posterior
may incur unnecessary computational effort. In such circumstances it is natural to seek to focus
computational resources on approximating just the quantities of interest.

Control variates are a classical technique for reducing the variance of Monte Carlo estimators,
which are used in a wide range of applications, including stochastic gradient-based optimization
(Wang et al. 2013, Grathwohl et al. 2018) and as part of MCMC methods themselves (Baker
et al. 2019). In this section we review the use of control variates as a postprocessing technique for
MCMC.We show that modern control variates, unlike their classical counterparts, can facilitate
bias removal as well as variance reduction. In Section 3.1 the control variate technique is presented
at a general level; then, in Section 3.2, we present specific control variates techniques and explain
how these can be used to postprocess MCMC.

3.1. Monte Carlo Estimators

For the purposes of this article, a Monte Carlo estimator is a map μ : � × L2(P) → R whose
output μ(ω, f ) depends on ω only via dependence on a collection of random variables X1(ω), . . . ,
Xn(ω). The output, μ(ω, f ), is interpreted as an approximation to the integral �fdP, which we
consider to be a scalar quantity of interest. Our focus is on Monte Carlo estimators that are based
on MCMC output, with the standard example being the estimator

μ(ω, f ) = 1
N

N∑
i=1

f (Xi(ω)), 10.

which takes an average of f over the states (Xn)n ≤ N in theMCMC output. Such an estimator is said
to be consistent if, for all f ∈ L2(P), the random variable in Equation 10 converges in probability
to �fdP as N → ∞. The asymptotics of Equation 10 are well studied in the setting where the
Markov chain is P-invariant (Meyn & Tweedie 2012). Improved approximations can be obtained
using the methods described in Section 2. For example, postprocessedMCMC output of the form
in Equation 1 can be used to provide a Monte Carlo estimator

μ(ω, f ) =
M∑
i=1

wi f (Xπ (i) (ω)). 11.

In the setting where the Markov chain is not P-invariant, Equation 10 will be asymptotically bi-
ased in general, but Equation 11 may yet be consistent, as explained in Section 2.3, and therefore
Equation 11 may be preferred. In the presence of several consistent estimators, it is natural to ask
which estimator should be preferred; this question can be rigorously formulated in terms of the
mean square error of the estimators and the answer will be f-dependent in general. For conve-
nience, we leave the ω argument implicit in the remainder of this section.

3.1.1. Selecting aMonte Carlo estimator. Themean square error of aMonte Carlo estimator
μ is defined as

MSE(μ( f )) := E

[(
μ( f ) −

∫
f dP
)2]

. 12.

Presented with a collection {μθ }θ �  of Monte Carlo estimators, say indexed by θ � , we would
like to select an estimator for whichMSE(μθ ( f )) is minimized. Let us assume that the mean square
error can itself be consistently estimated based on the MCMC output, i.e., we have available an
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Control variate:
a square-integrable
function whose
expectation is 0

GENERAL RECIPE TO SELECT A MONTE CARLO ESTIMATOR

1. Identify a collection of Monte Carlo estimators μθ , θ � .
2. For each estimator, compute M̂SE(μθ ( f )).
3. Select θ̂ such that θ �→ M̂SE(μθ ( f )) is minimized.

estimator M̂SE(μ( f )). Then, a general recipe to select a Monte Carlo estimator appears in the
sidebar titled General Recipe to Select a Monte Carlo Estimator.

There are at least three possible shortcomings with this general recipe, which will be discussed.
First, it is not clear how one should identify an appropriate set of Monte Carlo estimators; control
variates provide an elegant solution that we discuss next in Section 3.1.2. Second, it may be chal-
lenging to identify a suitable estimator for the mean squared M̂SE, since the underlying MCMC
method may be complicated. Options for this are discussed in Section 3.1.3. Third, estimation
error in M̂SE presents a challenge when there are manyMonte Carlo estimators being compared,
since with more estimators there is a greater chance of selecting a poor estimator due to bad luck.
A solution to this problem requires that the size of the set of candidate estimators is controlled
in some way commensurate with the error in M̂SE. Several solutions are discussed in Section 3.2,
including restricting the size of this set through the use of explicit finite-dimensional bases, and
through coupling the size of  to the size N of the MCMC output.

We emphasize that, compared with the techniques reviewed in Section 2, the selection of
Monte Carlo estimators remains as much an art as a science. Theoretical analyses are available
on some aspects of the general recipe just outlined and will be highlighted, but to our knowledge
there does not yet exist a theoretical treatment that is broadly applicable in the MCMC context.

3.1.2. Constructing Monte Carlo estimators using control variates. An element g ∈ L2(P)
is said to be a control variate (for P) if �gdP = 0. Clearly any finite linear combination of control
variates is also a control variate, and we use G to denote a linear subspace of L2(P) whose elements
are control variates. The power of control variates is that they enable one to take a single Monte
Carlo estimator, such as Equation 10, and from this generate a possibly large collection of Monte
Carlo estimators. Indeed, armed with a consistent Monte Carlo estimator μ and a set of control
variates G, one can consider Monte Carlo estimators of the form μθ ( f ) := θ1 + μ( f − θ1 − θ2)
where θ1 ∈ R, θ2 ∈ G,  = R × G. The consistency of μ is automatically inherited by each μθ .

Up to this point we have not discussed how control variates can be found in practice. Many
approaches for developing control variates in the context of Markov chain sampling are based on
approximating the solution f̂ to the typically intractable Poisson equation

f̂ − K f̂ = f − E[ f ], 13.

where K is the one-step-ahead prediction operator K f̂ = E[ f̂ (X (n+1) )|X (n) = x]. In this setting,
one could evaluate E[ f ] exactly by evaluating f + K f̂ − f̂ . Andradóttir et al. (1993) propose nu-
merical algorithms to approximate this solution in the context of finite state spaces. Henderson
(1997) approximates the solution for specific Markov samplers, focusing on continuous-time
processes and applications in stochastic network theory. This was extended in Dellaportas &
Kontoyiannis (2012) for reversible Markov chains where K is tractable for some basis functions.
A method to approximate the solution to the Poisson equation by discretizing the state space for
geometrically ergodic Metropolis–Hastings chains is introduced by Mijatović & Vogrinc (2018).
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Control variates have also been built for independent Metropolis–Hastings samplers (Atchadé
& Perron 2005) and for general Metropolis–Hastings samplers (Hammer & Tjelmeland 2008),
although the latter approach requires an extension of the state space to include proposals.

The aforementioned control variates are sampler specific or require adjustments to theMCMC
algorithm. Section 3.2 describes sampler-agnostic control variates that are applicable when�log p
or an unbiased estimate is available.

3.1.3. Proxies for mean square error. The problem of estimating the mean square error of a
Monte Carlo estimator is difficult, due to the fact that both the dependence between the states
(Xn)n ≤ N in MCMC output and the way that these states are combined in theMonte Carlo estima-
tor μ can be arbitrarily complicated. Readers are directed to, for example, Flegal & Jones (2010)
for strategies that can be used to estimate the mean square error of the Monte Carlo estimator in
Equation 10. To promote generality, here we consider simple and generic proxies for mean square
error that are easily computed, and much of what we recommend is based on empirical evidence
only.

A simple proxy for mean square error can be obtained by considering Equation 11 in the ide-
alized setting where Xi ∼ P, for which it follows

MSE

(
M∑
i=1

wi f (Xπ (i) )

)
≤ 1
M

∫ (
f −
∫

f dP
)2

dP =:
Var( f )
M

, 14.

with equality when the Xi are independent. The variance Var( f ) can be estimated using the em-
pirical variance

V̂ar( f ) :=
M∑
i=1

wi

⎛⎝ f (Xπ (i) ) −
M∑
j=1

w j f (Xπ ( j) )

⎞⎠2

, 15.

evaluated usingMCMCoutput.Empirical varianceminimization for constructing control variates
was studied by Belomestny et al. (2021) for the case where the Xi are independent. For noninde-
pendent Xi, arising as MCMC output, a more involved proxy based on spectral approximation
of the asymptotic variance was studied by Brosse et al. (2019) and Belomestny et al. (2020a,b),
representing probably the most successful attempt to date to provide theory for control variates
for postprocessing MCMC output. A popular and simple upper bound on Equation 15 is the least
squares estimator

L̂S( f ) :=
M∑
i=1

wi f (Xπ (i) )2. 16.

An empirical comparison of empirical variance and least squares estimators for the selection of
control variates by Si et al. (2020) reported that, perhaps surprisingly, the least squares estimator
performed best. That is, one selects θ̂ ∈ R × G in order that θ �→ L̂S( f − θ1 − θ2) is minimized.
The scalar integral of interest is then estimated as∫

f dP ≈ μθ̂ ( f ) = θ̂1 +
M∑
i=1

wi

(
f (Xπ (i) ) − θ̂1 − θ̂2(Xπ (i) )

)
︸ ︷︷ ︸

=0

, 17.

where we have used the defining optimality property of θ̂2 to conclude that the summation in
Equation 17 is zero. One can equivalently describe this estimator as the result of first solving the
weighted least squares regression problem

f (xi ) = θ1 + θ2(xi ) + εi 18.
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for the intercept θ1 ∈ R and the predictor θ2 ∈ G, where the dataset consists of the (random) co-
variates xi = Xπ (i) and independent errors εi ∼ N (0,w−1

i ), i = 1, . . . ,M, then reporting the fitted
intercept θ̂1 as an approximation to the integral of interest. Next we address the question of how
a set G of control variates can actually be constructed.

3.2. Gradient-Based Control Variates

Perhaps the main challenge in the application of control variates is identifying a suitable linear
subspace G. The elements of G should (a) have known expectation under P, (b) be easy to compute,
and (c) offer an improvement on a Monte Carlo estimator μ that would otherwise have been
used, in the sense that MSE(μθ ( f )) < MSE(μ( f )) for some θ ∈ R × G. In this section we discuss
gradient-based control variates that often meet these requirements, focusing on domains X = Rd

for some d ∈ N. These gradient-based control variates are constructed using mathematical tools
similar to those exploited in Section 2. The construction of control variates for non-Euclidean
domains is discussed by Barp et al. (2021) for closed manifolds, while the general case, including
discrete domains, remains underdeveloped.

Recall the operator AP defined in Equation 3; i.e., APh = ∇ · h+ ∇ log p · h where h : Rd →
Rd . It was shown (in the sidebar titledTail Condition for SteinDiscrepancy) that

∫ APh dP = 0 un-
der an appropriate tail condition on h; it therefore is natural to consider a linear subspace of L2(P)
consisting of control variates of the form G = AP� = {APφ : φ ∈ �}, where � := {φ : Rd → Rd}
is a linear space of functions for which the aforementioned tail condition is satisfied. The form for
gradient-based control variates described here can be traced to the physics literature (Assaraf &
Caffarel 1999, 2003) and was first brought to bear on MCMC in Mira et al. (2013). As discussed
in Section 2, the required gradients are produced as a byproduct when gradient-based samplers,
such as the Metropolis-adjusted Langevin algorithm (Roberts & Stramer 2002) or Hamiltonian
Monte Carlo (Duane et al. 1987), are used, making the combination of gradient-based sampling
and gradient-based control variates particularly appealing (Papamarkou et al. 2014).

It remains to be discussed how the set � of differentiable vector fields φ : Rd → Rd can be
selected. In what follows, we review some of the main choices that previous researchers have
considered.

3.2.1. Finite-dimensional basis. Perhaps the simplest choice for � is the linear span of a finite
set {φ1, . . . ,φJ}. There is clearly much flexibility in the choice of the vector fields φj, but a popular
choice is to use the gradients of monomials. Specifically, the so-called zero-variance control vari-
ates (ZVCV) of Assaraf & Caffarel (1999, 2003) and Mira et al. (2013) set � to be gradients of the
class of rth order polynomials, � = span{∇xα : α ∈ Nd

0, 0 < |α| ≤ r} where r ∈ N, xα =∏d
i=1 x

αi
i

and |α| =∑d
i=1 |αi|. The number of basis functions is therefore J = (d+rd ), and the associated set G

of control variates contains elements of the form

AP (∇xα ) =
d∑
j=1

α j

[
(α j − 1)x

α j−2
j + x

α j−1
j ∇x j log p(x)

]∏
i 
= j

xαi
i . 19.

Having identified �, we can aim to select an optimal control variate from G using one of
the proxies for mean square error discussed in Section 3.1.3. Suppose that J < M and consider
the least squares proxy in Equation 16. In what follows we consider a Monte Carlo estimator
of the form in Equation 11, which of course contains, as a special case, the vanilla Monte Carlo
estimator in Equation 10. Then, we solve the regression problem in Equation 18 to obtain a fitted
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Semiexact: a Monte
Carlo estimator is
semiexact if it is exact
on a linear subspace of
L2(P)

regression model

f̂ (x) = θ̂1 +
J∑
j=1

θ̂2, jAPφ j (x), 20.

where we collect the regression coefficients together into a vector c = (θ̂1, θ̂2,1, . . . , θ̂2,J )T ∈ RJ+1.
For completeness we now provide an explicit formula for the coefficient vector c in the fitted
model. Let

f =

⎡⎢⎢⎣
f (Xπ (1) )

...
f (Xπ (M ) )

⎤⎥⎥⎦, W =

⎡⎢⎢⎣
w1

...
wM

⎤⎥⎥⎦, � =

⎡⎢⎢⎣
1 APφ1(Xπ (1) ) · · · APφJ(Xπ (1) )
...

...
...

...
1 APφ1(Xπ (M ) ) · · · APφJ(Xπ (M ) )

⎤⎥⎥⎦.
Then standard calculations show that selecting c to minimize L̂S( f − f̂ ) leads to the estimated
coefficients being ĉ = (��W�)−1��W f . The integral �fdP of interest is approximated by θ̂1, the
first component of c. TheMonte Carlo estimator so obtained will be denotedμZVCV( f ) = ĉTe1 =
θ̂1 in the following.

An intriguing property of gradient-based control variates with finite-dimensional bases is that,
under many of the proxies for mean square error that we discussed, the resulting Monte Carlo
estimators are semiexact, in the sense that MSE(μZVCV( f )) = 0 when f ∈ span{1} ⊕ AP�.

Recalling that for a Gaussian P, the gradient �log p is a first order polynomial, semiexactness
in this case carries the interpretation of being exact for polynomials up to a certain order when
� consists of gradients of monomials, in a similar way to how Gaussian cubature methods are
constructed. This explains the “zero variance” nomenclature used by Assaraf & Caffarel (1999,
2003) and Mira et al. (2013).

The main problem with using a finite-dimensional basis is that the regression problem is typ-
ically misspecified, since f /∈ span{1} ⊕ AP� for most functions f of interest. This limits the vari-
ance reduction that can be achieved. To improve convergence rates, one could consider increasing
the size of � with increasing M, in the spirit of Portier & Segers (2018) and South et al. (2018),
or using an infinite-dimensional basis with regularization, as described next.

3.2.2. Infinite-dimensional basis. Oates et al. (2017) extended the gradient-based control vari-
ates of Assaraf &Caffarel (1999, 2003) andMira et al. (2013) to an infinite-dimensional linear sub-
space of L2(P). This was achieved by taking � = H(k)d to be a Cartesian product of reproducing
kernelHilbert spacesH(k) of sufficiently regular functions (see the sidebar titled Kernel SteinDis-
crepancy in Section 2 for background). The resulting set of control variates is G = AP� = H(kP ),
which is again a reproducing kernel Hilbert space with reproducing kernel kP(x, y) defined in the
first equation in the sidebar titled Kernel Stein Discrepancy. The resulting method was referred
to as control functionals (CF), a nonparametric (or functional) generalization of existing control
variates.

The major challenge associated with an infinite-dimensional set G of control variates is
overfitting; there may be infinitely many θ ∈ R × G for which M̂SE(μθ ( f )) = 0, yet in reality
MSE(μθ ( f )) may be arbitrarily large. Consider, for instance, the least squares proxy

L̂S( f − θ1 − θ2) =
M∑
i=1

wi
(
f (Xπ (i) ) − θ1 − θ2(Xπ (i) )

)2 , 21.

which can be driven to zero by taking θ2 to interpolate f − θ1 at the nodes Xπ (i), i = 1, . . . , M.
Constraining θ2 at a finite set of locations does not constrain what θ2 may do outside this finite
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Super-
√
M

convergence: the
property of having a
convergence rate that
is o(M−1/2)

set and is therefore not sufficient to provide control on MSE(μθ ( f )). The methodological con-
tribution of Oates et al. (2017) was to select, among the set of θ ∈ R × G for which Equation 21
is minimized, an element with minimal seminorm, where the seminorm on R × G was defined as
|θ |2 = 〈θ2, θ2〉H(kP ). Under regularity assumptions, it can be shown that there exists a unique such
element θ ∈ R × G. Moreover, there is a closed-form solution to this optimization problem that
leads to the estimator μCF( f ) = (1�K−1

P 1)−1(1�K−1
P f ), where [KP]i, j = kP(Xπ (i), Xπ (j)). Note that

wemay,without loss of generality, assume that theXπ (i) are distinct in Equation 11, since otherwise
we could consider smallerM and modify the weights accordingly. This ensures that the matrix KP
is nonsingular whenever kP is a genuine reproducing kernel. An interesting feature, and possible
weakness, of CF is that the Monte Carlo estimator obtained does not depend on the weights wi

appearing in Equation 11.
The performance of CF is heavily dependent on the choice of the kernel k. A common choice

is to use a radial kernel k, such that k(x, y) depends only on ‖x − y‖, with examples including the
Gaussian, Matérn, and rational quadratic kernels (Rasmussen 2003). Typically such kernels will
be parametric, with a small number of parameters � that must be specified. Oates et al. (2017)
recommended using cross-validation to select kernel parameters �, wherein a subset of the {Xπ (i),
i � Itrain} are used construct the Monte Carlo estimator μθ ( f ) where θ = θ̂ � ∈ R × G and per-
formance of this Monte Carlo estimator associated with � is measured by the sum of squared
errors E� :=

∑
i∈Itest wi( f (Xπ (i) ) − θ̂ �

1 − θ̂ �
2 (Xπ (i) ))2, where Itest = {1, . . . ,M}
Itrain. One then selects

the kernel parameters � for which E� is minimized.
Under regularity assumptions, CF have theoretical advantages over ZVCV. Oates et al. (2019)

and Barp et al. (2021) used results from scattered data approximation (Wendland 2004) to prove
that, in the uniformly weighted case (i.e., wi = 1

M ), the expected error E[|μθ̂ ( f ) − ∫ f dP|] con-
verges at a rateO(M−s/dlog (M)−s/d), where here s is the number of (weak) derivatives of the function
f whose integral is sought. This indicates that the use of CF for postprocessing MCMC output
can actually improve the convergence rate of the estimator compared with standard MCMC, pro-
vided that the smoothness s of f is commensurate with the dimension d of the domain on which
it is defined (i.e., s > d

2 ). Thus, CF are an example of a method that offers super-
√
M conver-

gence. The main weakness of CF is that their performance can be inferior to ZVCV when the
dimension d is high relative to the sizeM of the dataset; next, we discuss how this weakness can be
addressed.

3.2.3. Mixed basis. To address the poor performance of CF relative to CV in the high-
dimensional context, South et al. (2021) generalized the approaches discussed in Sections 3.2.1
and 3.2.2, to consider functional approximations of the form

f̂ (x) = θ̂1 + θ̂2(x) +
J∑
j=1

θ̂ ′
2, jAPφ j (x), 22.

where the parameters θ̂ , consisting of θ̂1 ∈ R, θ̂2 ∈ H(kP ) and θ̂ ′
2 ∈ RJ, are about to be specified.

Notice that one recovers the same form of approximation used in ZVCV, i.e., Equation 20, as the
special case where θ̂2 = 0. Similarly, one can show that the same form as CF is recovered when
θ̂ ′
2 = 0.Thus,Equation 22 represents a strict generalization of ZVCV andCF, and onemay hope to
obtain the best of both worlds in terms of the superior performance of ZVCV in high dimensions
and the super-

√
M convergence of CF. The performance of this hybrid approach depends on how

the parameters θ̂ are selected. Following Sard (1949), South et al. (2021) propose to select θ̂ such
that the following properties are satisfied:

1. f̂ = f for all f ∈ span{1} ⊕ AP�, where � = span{φ1, . . . , φJ}
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Bias-correcting:
capable of removing
asymptotic bias in
certain biased MCMC
algorithms

Table 1 Properties of the control variate methods we have discussed

Method Complexity Semiexact Bias-correcting Super-
√
M

Vanilla MCMC O(Nd ) No No No

ZVCV + L̂S O(Nd + Md2r + d3r) Yes No No
CF O(Nd + M3 + M2d ) No Yes Yes (e.g., Barp et al. 2021)
SECF O(Nd + M3 + d3r) Yes Yes Yes (conjectured)

Abbreviations: CF, control functionals; LS, least squares; MCMC, Markov chain Monte Carlo; SECF, semiexact control functional; ZVCV, zero-variance
control variates.

2. L̂S( f − f̂ ) = 0
3. θ̂2 minimizes θ2 �→ 〈θ2, θ2〉H(kP ) subject to the first two properties being satisfied

The first property is to ensure semiexactness, and the second is an interpolation requirement.
The third property amounts to minimizing the seminorm |θ | = 〈θ2, θ2〉H(kP ) and serves to en-
sure uniqueness of θ̂ and to penalize complexity, similarly to CF. This method is referred to
as a semiexact control functional (SECF), and the closed-form solution for the estimator is
μSECF( f ) = eT1 (�

�K−1
P �)−1��K−1

P f . If there are parameters � in the kernel k that must be speci-
fied, then cross-validation can be applied in a similar way to that described in Section 3.2.2. Simi-
larly to CF, a possible weakness of this hybrid approach is that theMonte Carlo estimator obtained
does not depend on the weights wi appearing in Equation 11.

South et al. (2021) demonstrated that such a hybrid approach can indeed enjoy the advantages
of both ZVCV and CF; we illustrate this below in Section 3.2.4.1. Open-source software is avail-
able for ZVCV,CF, and SECF, via the ZVCV package (South 2020) on the comprehensive R archive
network (CRAN). The required input for this package is a set of M samples and the associated
evaluations of f (·) and �log p(·).

3.2.4. Practical considerations. Earlier we alluded to the construction of control variates being
more an art than a science; here, we provide practical recommendations based on our personal
experience using control variates to postprocess MCMC.

3.2.4.1. Choosing a control variate method. Choosing between various control variate meth-
ods, like ZVCV, CF, and SECF, is nontrivial. Cross-validation approaches are computationally
expensive and prone to incorrect decisions due to the need to reduce the sample size in each fold.
It would therefore be helpful to have an understanding of the theoretical properties of different
methods. Unfortunately, such theoretical analyses are underdeveloped at present. Specifically, the
theory that does exist tends to involve assumptions that are difficult to verify in practice, if they
hold at all. Table 1 summarizes the current state of knowledge for the methods that we have
discussed.

The positive entries in Table 1 should be interpreted as there being (possibly strong) theo-
retical assumptions under which the result has been established. The fact that CF and SECF are
bias-correcting will not come as a surprise to the reader in light of the discussion in Section 2.3.1.A
perhaps more useful approach to selection of a control variate method is to explore their empirical
performance in the context of a synthetic test-bed.

Example 2. Here we compare the performance of different control variate methods on a
simple toy example that aims to represent the (relatively common) situation in which P is ap-
proximately Gaussian, which may hold in applications for which there is a Bernstein-von-Mises
limit. For illustrative purposes, we use a 1-dimensional unit Gaussian distribution with density
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Figure 5

Gradient-based control variates in a toy example. Panels a–c show the function f of interest (gray line) along with the values f (Xi)
computed at the random locations (Xi)i ≤ N,N = 20 (blue circles). These data are used to construct approximations f̂ (red line) to f, in
each of the methods zero-variance control variates, CF, and SECF. Panel d shows boxplots of 100 independent estimates for the integral
�fdP of interest, with the true value of the integral shown as a thick black line. Abbreviations: CF, control functionals; MC, Monte
Carlo; SECF, semiexact control functional; ZVCV, zero-variance control variates.

p(x) = (2π )−1/2exp(−x2/2) and we estimate the posterior expectation of f (x) = 1 + x + x2 +
sin (πx)exp(−x2), for which one can verify �fdP = 2. This function f was chosen because the
combination of complex behavior near x = 0 and polynomial behavior in the tails presents
challenges for both the parametric and nonparametric methods. For simplicity we consider an
idealized MCMC algorithm that samples Xi independently from P, and we consider the vanilla
Monte Carlo (MC) estimator 1

N
∑N

i=1 f (Xi ) as our starting point; i.e., we seek to reduce the
variance of this Monte Carlo estimator using a control variate method.

The results are shown in Figure 5. Here, the approximating function f̂ for ZVCV is a
second-order polynomial,6 which provides a poor approximation in the region where there are
data but provides a good approximation in the tail (Section 3.2.4.1). For CF,7 the interpolant f̂
performs well in regions where there are data, less so in the tail (Section 3.2.4.1). In contrast,
SECF8 is seen to enjoy the best of both worlds, behaving like CF in the region of the data and
like ZVCV in the tail (Section 3.2.4.1). Examining the sampling distribution of these estimators
through repeated simulation, we observe a remarkable increase in accuracy as a result of post-
processing the MCMC output (Section 3.2.4.1). Although the total computing time for the 100
repeated simulations increases from approximately 0.02 seconds for vanilla Monte Carlo inte-
gration to 0.11 seconds for ZVCV, 0.17 seconds for CF, and 0.19 seconds for SECF, all three
control variate methods improve upon the vanilla Monte Carlo estimate in terms of the overall
efficiency measured by the product of mean square error and computing time.

3.2.4.2. Computational cost. For many problems the benefit provided by control variates
is not justified when the computational cost of implementation is taken into account (see
Table 1). However, when the cost of obtaining MCMC output, or the cost of evaluating f on
MCMC output, is sufficiently high then control variates can be a useful tool. For borderline cases,
Si et al. (2020) demonstrated the use of stochastic gradient descent to speed up the optimization

6ZVCV was implemented with a polynomial basis of order r = 2, fit using L̂S. The form of f̂ as a second
order polynomial can be derived using Equation 19 and �log p = −x.
7CF were implemented with a Gaussian kernel k(x, y) = exp(−x2/λ2) where λ is selected from 10{−2, −1, 0, 1, 2}

using 3-fold cross-validation.
8SECF was implemented with r = 2 and a Gaussian kernel k(x, y) = exp(−x2/λ2) where λ was selected in the
same way as CF.
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in step 3 of the general recipe to select a Monte Carlo estimator. A reduced-cost SECF method,
based on a low-rank Nyström approximation, was also proposed by South et al. (2021).

3.2.4.3. Curse of dimension. The gradient-based control variates that we discussed suffer from
a curse of dimension, which is most evident in kernel methods like CF. However, the regression
perspective in Equation 18 suggests that, by analogy with high-dimensional regression modeling
(Bühlmann & Van De Geer 2011), it may be possible to construct control variates for functions
f whose effective dimension is small, despite a high ambient dimension of X . Additional regular-
ization can be introduced to this effect (South et al. 2018, Wan et al. 2019), with positive results
reported for d ≤ 100. For even larger d, it may be sensible to pursue nonlinear approximation
(DeVore 1998), where the basis � is restricted to allow dependence only on a subset of the pa-
rameters (so-called a priori regularization in South et al. 2018).

3.3. Summary

This section focused on the application of gradient-based control variates to approximate an in-
tegral of interest based on output from MCMC. Applications to other sampling algorithms, such
as population MCMC (Oates et al. 2016), stochastic gradient Langevin dynamics (Baker et al.
2019), sequential Monte Carlo (South et al. 2018), and unbiased MCMC with couplings (South
et al. 2019) have also been considered, and much of our discussion applies unchanged. Applica-
tions to estimation of the normalizing constant of the posterior have also been considered in the
population MCMC and sequential Monte Carlo sampler settings (Oates et al. 2016, South et al.
2018). Again, the extension is straightforward and consists of applying the ideas from this section
to improve multiple expectations. The ZVCV package (South 2020) on CRAN provides functions
to apply ZVCV and CF to two estimators of the normalizing constant.

A current weakness of control variate methodology is that it is underdeveloped from a theoret-
ical perspective; our focus was on sets of control variates that form linear subspaces of L2(P), for
which some limited theoretical understanding has been achieved, but more sophisticated sets of
control variates have also been empirically considered. For example,Wan et al. (2019) and Si et al.
(2020) proposed using the gradients of neural networks for the set �. A neural network is parame-
terized by a collection of weights and biases, which are jointly estimated using stochastic gradient
descent applied to a proxy for mean square error, as discussed in Section 3.1.3. These authors
found empirically that this approach can lead to improved performance over methods like ZVCV
and CF in the high-dimensional context. In light of the anticipated technical complexity required
to analyze such sophisticated control variate methods, we expect that empirical assessment will
continue to be the primary means through which control variate methodology is developed and
assessed.

4. DISCUSSION

MCMC has become a core part of most graduate programs in statistics due to its effectiveness
in enabling Bayesian analyses to be performed. Perhaps understandably, these programs focus on
the design and validity of algorithms, emphasizing the elegant probabilistic arguments that are
often involved. However, this leaves little or no time to discuss postprocessing of MCMC output.
In fact, our impression is that many professional users of MCMC are also not aware of this as-
pect, beyond convergence diagnostics and burn-in removal. Through writing this review, we hope
greater attention may be given to this underappreciated but important practical side of MCMC.
In particular, the topic is receiving considerable attention from computational researchers at the
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time of writing, and we extend an invitation to the interested reader to explore further into the
recent works cited.
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