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ABSTRACT

�is thesis concerns several newdevelopments in the probabilistic solution of ordinary

di�erential equations. Probabilistic numerical methods are di�erentiated from their

classical counterparts through the key property of returning a probability measure as

output, rather than simply a point value. When properly calibrated, this measure can

then be taken to probabilistically represent the output uncertainty arising from the

application of the numerical procedure.

A�er giving some introductory context, we start with a concise survey of the still-

developing �eld of probabilistic ODE solvers, highlighting how several di�erent

paradigms have developed somewhat in parallel. One of these, established by Conrad

et al. [Con16], de�nes randomised one-step solvers for initial value problems, where

the outputs are empirical measures arising from Monte Carlo repetitions of the

algorithm. We extend this to multistep solvers of Adams–Bashforth type using a

novel Gaussian process construction. �e properties of this method are explored and

its convergence is rigorously proved.

We continue by de�ning a class of implicit probabilistic ODE solvers, the �rst in

the literature. Unlike explicit methods, these modi�ed Adams–Moulton algorithms

incorporate information from the ODE dynamics beyond the current time-point,

and as such are able to enhance the accuracy of the probabilistic model of numerical

error. In their full form, they output a non-parametric description of the stepwise

error, though we also propose a parametric approximation that aids computation.

Once again, we explore the properties of the method and prove its convergence in

the small step-size limit.

3



We follow with a discussion on the problem of calibration for these classes of algo-

rithms, and generalise a proposal from Conrad et al. in order to implement it for our

methods. We then apply the new integrators to two test di�erential equation models,

�rst in the solution of the forwardmodel, then later in the setting of a Bayesian inverse

problem. We contrast the e�ect of using probabilistic integrators instead of classical

ones on posterior inference over the model parameters, as well as derived functions

of the forward solution.

We conclude with a brief discussion on the advantages and shortcomings of the

proposed methods, and posit several suggestions for potential future research.
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GLOSSARY OF NOTATION

�roughout this work we attempt to maintain certain consistent notations and index-

ing conventions which we now summarise here. On occasion these are eased where

this locally bene�ts the clarity of the exposition—such instances are highlighted in

the text.

Where possible we use lower-case Latin letters (x , z, f , . . . ) to refer to continuous

objects and upper-case Latin letters (X , Z , F , . . . ) to refer to corresponding discrete ob-

jects. In each case these may be deterministic variables, such as a function f (x(t), t),
or random variables such as Zi . �e context should make this clear, and this ambigu-

ity is unavoidable when much of our work concerns the probabilistic treatment of

quantities usually thought of as deterministic.

We use t to denote time, the independent variable in an ODE. Subscript indices

usually refer to time ordinates. x(ti), the value of the function x at time ti , may also

be denoted by Xi . A sequence of variables Xi , Xi+1, . . . , X j−1, X j will bewritten Xi∶ j and,

where context is clear, sometimes simply as X. We occasionally employ the notation

X≤i , meaning the sequence of variables up to and including Xi . When considering

multivariate problems we use d for the dimension and superscripts in round brackets

to index them. Such vectors are written as columns; thus Xi ≡ (X(1)i , . . . , X(d)i )T .
In several situations, multiple instantiations of a particular algorithm produce copies

of variables—in the stochastic case this corresponds to the repeated realisation of a

random variable. We denote these with superscripts in square brackets, so that the

k’th sample from the measure induced by the random variable X is denoted X[k].
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We tend to use lower-case Greek letters (α, ϕ, θ , . . . ) for parameters. In an inverse

problem setting, models are parameterised by θ, which in general is q-dimensional.

Experimental data is denoted by Y and is a vector of M elements or, where Y is

multidimensional of dimension dY , a dY ×M matrix.

When considering the approximate solution of anODE, Zi refers to the approximation

to Xi , the value of the true solution x at time ti . Ẋi refers to the true derivative at ti ,

i.e. Ẋi ≡ dXi/dt = f (Xi , ti). Passing the approximate solution Zi to the function f

gives an approximation f (Zi , ti) to the derivative which we denote Fi , avoiding the

confusing use of Żi since with inexact inputs f does not act as a di�erential operator.

In initial value problems, where time starts at t = 0, it makes sense to use zero-

indexing, so that X0 refers to x(t0) where t0 is simply 0. We usually divide the

interval of integration [t0, tend] into N segments so that XN = x(tend) and X ≡ X0∶N

has cardinality N + 1. In a multivariate problem, X is an d × (N + 1)matrix.

In iterative procedures the current iteration is denoted by index i, so that the output

of a time-stepping method returns a state approximation at index i + 1. In general

we try to use i , j to index across time; v ,w to index across dimensions; and k,m to

index across iterations.

A number of other symbols are reserved for particular concepts throughout. We list

some of them here:

h time-step in iterative algorithms
s number of steps in multistep methods

βAB
j,s Adams–Bashforth coe�cients

βAM
j,s Adams–Moulton coe�cients
ei (classical) local truncation error at step i

Ei (classical) global error at step i

α integrator calibration constant
ω elementary event
Ω sample space
ξ set of perturbations of randomised integrators
Φt (exact) �ow map
Ψh numerical �ow map
L f Lipschitz constant of f
J f Jacobian matrix of f
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1
INTRODUCTION & BACKGROUND

1.1 inverse problems

In most of science, experimental observations are not direct, unmediated represen-

tations of the quantity of interest. For example, a biologist may wish to know the

rate at which some hormone is secreted by a certain gland in an animal’s body. �is

is, for practical purposes, impossible to observe directly. But if the biologist has a

scienti�c model for the e�ects of this hormone—say that higher concentrations make

the hair on the animal’s body grow faster—measurements of hair length may provide

information about the hormone secretion rate.

Drawing conclusions about an inaccessible underlying process based on a set of

indirect observations, along with a mathematical model connecting the two, is an

instance of an inverse problem. �e term is used in opposition to the forward problem,

in which the outcome of an experiment is deduced given knowledge of the real process.

(If the biologist were able to alter the secretion rate of the hormone in a controlled

manner, what change in hair growth would be expected?) Mathematically, this set-up

is written:

y = G(x) + ε (1.1)

Here, x represents the underlying physical process and y represents the collected

data. G is the observation operator, which encodes the model assumed to connect

the two. ε represents the random noise that it is accepted will inevitably corrupt any

measurement. �e inverse problem seeks to recover x given y, G, and some statistical

assumptions on ε.1
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�is formulation is extremely general, and we now restrict it to the more speci�c

format we will consider in this work. Firstly, we will assume throughout that the data

is a discrete object of cardinality M. �is corresponds to the reasonable real-world

assumption that the number of measurements is �nite. In line with our intention to

represent discrete objects by capital letters, we will henceforth term the dataset Y .

Each element Yj of Y is a real-valued vector of dimension dY . We also assume that the

points where the data are collected can be indexed by a one-dimensional continuous

scalar variable t ∈ R, which we identify with time. Such a restriction is justi�ed

because we focus on methods for ODEs rather than those for PDEs. For each time

tYj
for which a datum Yj exists, we say that there is a corresponding random noise

vector ε j ∈ RdY , each of which is independent and identically distributed according

to some probability measure.

�e nature of x we leave more general. Its dimension d is not necessarily equal to dY .

Typically x would be a function (of time t) and depend on a q-dimensional parameter

θ. Each component of this parameter represents some quantitative degree of freedom

in the model speci�cation, the value of which is unknown. In our earlier example, it

may be that while the biologist’s model states that a linear relationship exists between

hormone secretion and hair growth, the actual quantity of hair growth that can be

attributed to a change of one unit of hormone is not known. �is unknown quantity

becomes a parameter of the model.

In parametric models, the inverse problem is in e�ect the attempt to deduce the value

of the parameter θ since, given this, we can completely specify the structure of the

model. In our set-up, we make this dependence clear by writing the underlying true

process as xθ(t).2
Lastly we consider the observation operator G. We assume this is independent of t

(except through its argument x) and therefore acts as a sort of projection operator

from RdY to Rd . In other words, at a particular time t∗, it acts as a function mapping

xθ(t∗) ∈ RdY to a vector in Rd . We generally assume that this mapping is linear, and

can therefore be represented by a matrix G.3

1We have separated the stochastic noise ε from the observation operator, though some treatments
combine them and de�ne a stochastic observation operatorGε instead. We have alsomade the common
assumption that the measurement noise is additive—for our purposes this su�ces, but naturally some
models do assume a functionally more complicated error than this.

2�e situation in which the range of the parameters does not cover all plausiblemodels is suggestive
of inadequacy of the model itself. Resolving this is a complex problem and is o�en not possible to do
in a systematic way. Furthermore, even the meaning of the ‘true value’ of a parameter can be subtle.
For example, if the model itself is a poor one, the use of a supposedly known parameter value—such
as some universal physical constant—may result in predictions inferior to the use of some alternative
‘not exactly true’ value. �us model inadequacy can also manifest as parameter uncertainty. �ese and
other related issues are discussed in depth by Kennedy & O’Hagan [Ken01].
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Summarising the above, we can rewrite (1.1) more precisely as

Yj = Gxθ(tYj
) + ε j , j = 1, 2, . . . ,M (1.2)

Recall that given the data Y ≡ Y1∶M , the matrix G, the distribution of ε, and the

assumed form of the model xθ , we seek to infer the parameter θ.

1.1.1 What does it mean to ‘solve’ an inverse problem?

�e question of how to describe the ‘solution’ of a parametric inverse problem does

not in itself have an obvious answer. �e standard approach is to report an estimate θ̂

for the unknown parameter θ, calculated using some pre-agreed statistical estimation

procedure. For example, in a least squares approach, the estimator

θ̂ = argmin
θ∈Θ

M∑
j=1

(Yj −G(xθ(tYj
)))2 (1.3)

is calculated (approximately—using conjugate gradients, say [Kai06, §5.5]). If the

errors ε j are independent zero-mean Gaussian, and G and xθ are linear mappings,

this L2 minimisation returns the maximum likelihood estimator, by a result known as

the Gauss–Markov�eorem [Gre12, §4.4]. Other estimators can be considered—we

may seek to minimise the L1 residuals instead, and this estimator can be shown to be

more robust to outliers in the data [Ast11, §1.2].

�e problem with such approaches is that inverse problems are typically ill-posed

[Had02]. In this situation, small changes in the data Y can produce abrupt—and

sometimes arbitrarily large—changes in the inferred parameter values [Stu10]. �is

means �rstly that the calculation itself can be unstable. However, even if the minimi-

sation can be successfully performed, the scienti�c value of reporting a point estimate

is questionable when there is such a strong sensitivity to the speci�c dataset.

�e classical approach to mitigating this issue is regularisation [Tik95] where, for

example, penalty terms are added to the right-hand side of (1.3) to improve stability, or

some type of dimension reduction is performed to simplify the computation. While

this strategy is in widespread use—and has a solid theory behind it—it introduces

bias to the estimator [Ast11, §1.4], adds further parameters which it is o�en unclear

how to set, and essentially constitutes nothing other than an ad hoc removal of as

much ill-posedness from the problem as is necessary to report an answer [Kai06, §3].

3Our focus in this thesis is on methodological issues rather than the analysis of a particular
problem, and we can justify this simpli�cation on those grounds. �at being said, Aster et al. [Ast11]
give several examples from geophysics where the assumption of linearity is in fact warranted in practice.
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1.1.2 Statistical inverse problems

A di�erent approach to inverse problems is possible using the framework of Bayesian

statistical theory. In short, this paradigm requires us to treat all variables in (1.2) as

random variables, with probability measures representing our degree of knowledge

about their values. In particular, this approach reinterprets the ‘solution’ of an inverse

problem to mean a characterisation of the probability distribution of θ given the

data Y , rather than simply a point estimate for it [Tar05, §1.5]. �e formal theoretical

framework underpinning this paradigm is that of Bayesian probability theory [Jay03].

An instructive viewpoint is given by Kaipio & Somersalo [Kai06, §3], who point

out that rather than being viewed as a reduction in ill-posedness, this paradigm

actually reformulates the problem as a well-posed problem but in the larger space

of probability distributions. �e rigorous mathematical foundations of this view are

explored by Stuart [Stu10].

We will introduce some of the basic theory and methods of Bayesian probability

in the coming sections, highlighting in particular the ways in which this extremely

general theory of probability applies to the setting of parameter inference in inverse

problems. Before doing so we note that this application falls squarely within the

realm of Uncertainty Quanti�cation (UQ) [Smi13; Sul15], an emerging �eld using

precisely these tools—amongst others—to enrich the reporting of scienti�c conclu-

sions with a rigorous description of sources of error. �e cardinal aim of Uncertainty

Quanti�cation—which is the foundation for its increasing propagation through so

many parts of applied science—is that of enabling rational decision-making under

uncertainty [Tan07].

1.2 bayesian inference

Statistical inference is usually de�ned as the process of deducing a probability model

for some phenomenon based on the analysis of data generated by that same phe-

nomenon [Rob07, §1]. �e focus can be on trying to explain the mechanism that

produced the data at hand, or on the prediction of future behaviour, or both.

For the parametric inverse problem described in Section 1.1, the set of possible proba-

bility models is assumed to be indexed by an unknown �nite-dimensional parameter

θ taking values in a space Θ ⊆ Rq, such that the aim of the inference procedure is to

deduce a data-informed probability measure over Θ. In the Bayesian approach, this is

done by de�ning a prior distribution p(θ) representing our knowledge of θ before the
data are considered, and a parametric sampling distribution p(Y ∣θ) which encodes

the assumed form of the forward model as well as information about various sources

of error in the data generating process. (�e way in which errors are represented in

14



this distribution is one of the central points of our later study.) Together, these form a

joint probability model over (θ ,Y) that can then be conditioned on Y which, having

already been observed, is known. �is last step—of conditioning on the data in hand

in a formal probabilistic sense—is the cornerstone of Bayesian analysis.4

�e resulting distribution is the posterior probability distribution p(θ∣Y) and infer-

ence about θ is made based on this. �e ‘solution’ of the inverse problem in this

context is thus taken to be given by this posterior distribution, or well-chosen derived

quantities—for example the mean—calculated from it. �e fundamental relationship

between these quantities is given by Bayes’�eorem

p(θ∣Y) =
p(Y ∣θ)p(θ)

p(Y) (1.4)

1.2.1 Practical Bayesian analysis

We have now established that in order to analyse the inverse problem arising from

equation (1.2) in a Bayesian way, all we have to do is choose a prior distribution p(θ),
encode our scienti�c model into the distribution p(Y ∣θ) and out spits the posterior

p(θ∣Y)—which we have called our ‘solution’. What could be simpler?!

�e truth is that no part of this suggested programme is trivial to implement in reality—

indeed each is the primary subject of signi�cant and ongoing research endeavours in

contemporary statistics. We brie�y examine them in turn, and highlight where our

thesis makes a contribution.

Choosing the prior

Historically, the choice of prior distribution has been—particularly for non-Bayesians—

one of themost controversial elements of the Bayesian approach to statistical inference

[Gel08]. Firstly, a note on interpretation. �e prior distribution requires us to encode

our lack of knowledge of θ in mathematical form. �e measure p(θ) is thus a quan-
ti�cation of epistemic uncertainty about θ, and does not mean that θ is truly random

in a frequentist sense.

As pointed out by Kaipio & Somersalo [Kai06, §3.3], prior knowledge is o�en qualita-

tive in nature, and the challenge o�en consists in adequately translating this qualitative

4A rigorous measure-theoretic approach would demand that we de�ne some π to represent a
probability measure on the measurable space Θ, with p(θ)—considered as a function of the variable
θ—representing its density. Our exposition will con�ate these where no ambiguity results, because for
most of it such a distinction is needlessly �ddly. During some of the later analysis we will be more
careful. We will also write p(θ∗) for the probability of a speci�c element θ∗ ∈ Θ. In general we assume
all spaces are appropriately measurable and all measures have densities, unless otherwise noted.
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information into the form of a probability measure. In the absence of strong prior in-

formation, other approaches may be used, such as conjugate priors (for mathematical

convenience), or uninformative priors (in an attempt to be objective) [You05, §3.6].5

Beyond noting these issues, we will not consider prior choice deeply in this work.

Where the stability of the simulations is not compromised by such a choice, we will

o�en resort to the improper prior p(θ) ∝ 1, which does not represent a proper

probability measure if the parameter space Θ is such that its Lebesgue measure is

not �nite. �is will commonly be the case, since Θ is o�en a non-compact subset of

Euclidean subspace Rq.

Regardless of the prior we use, we assume throughout that it is easily and exactly

evaluable pointwise—that is, given a particular element θ∗ ∈ Θ, its probability—the

value of p(θ∗), with p(⋅) treated as a function—is trivial to calculate without error.

Encoding the model

�e sampling distribution p(Y ∣θ) encodes the assumed mathematical relationship

between the data Y and the ground truth. �e choice of model is a key task for the

statistician, and comparison of di�erent models—to �nd out which best explains the

data—is one of the main endeavours of statistics in practice [Cox06, Appendix B].

Since θ is unknown but Y is known, this distribution is o�en treated as a function of

θ, in which case it is known as the likelihood and written L(Y ; θ). We can identify

the likelihood with the operator G in equation (1.2), though it also carries information

about the structure of the measurement error ε. In both Bayesian and frequentist

statistics, the central status of the likelihood function is expressed by the Likelihood

Principle, which states that all the information in the data that is to be used for

posterior inference must be contained in the likelihood function. Jaynes [Jay03, §8.5]

discusses the interpretation of this principle at length.

In the common situation (assumed throughout this work) that each datum is cor-

rupted by an independent measurement error, the likelihood function will take the

form of a product of their individual likelihoods. �us we have

L(Y ; θ) =

M

∏
j=1

p(Yj∣θ) (1.5)

For our purposes, we will assume that the form of the likelihood function L(Y ; θ)
is fully speci�ed in advance of the analysis. �at is, the assumed likelihood can be

straightforwardly written down—even if evaluating it is not always straightforward.

5�ough a committed Bayesian would invariably contend that a claim asserting the absence of
prior information is itself an informative statement of the state of prior knowledge.
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Evaluating the likelihood

Equation (1.5) is the canonical example of the near-universal situation in which the

likelihood function is not a normalised probability density function. �is means that,

even if the likelihood is de�ned in closed form and we are given θ∗ ∈ Θ, the value
L(Y ; θ∗) to which it evaluates is not the probability of θ∗ given Y . As a result, we

cannot simply apply Bayes’�eorem (1.4). �is is the �rst of several practical issues

that complicate our calculation.

�e subtleties of evaluating the likelihood are various and di�erent problems arise

in di�erent situations. �e core material of this thesis addresses the case where the

likelihood is not evaluable exactly, even given an exact value θ∗ and even when its

form is fully speci�ed, due to inescapable mathematical impediments. We focus on

di�erential equation models, for which the likelihood function is de�ned implicitly,

and which fall into this category. We expand on this setup in considerable detail

starting in Section 1.3.

In passing, we give some other examples of di�culties that may arise in likelihood

evaluation. Where the quantity of data is very large, it may be that that the full

product in equation (1.5) is too expensive to calculate. Choosing a strict subset of

the data—randomly, but in a particular fashion—and evaluating only the likelihood

contributions of this subset, can result in an unbiased estimator of the log-likelihood.

If such an estimator is used in place of the full likelihood in a Monte Carlo procedure

(see Section 1.2.2), then under the pseudo-marginal framework [And09], posterior

inference may still be possible without introducing bias.

Sometimes the likelihood is completely intractable and alternative methods are re-

quired which are able to circumvent the need to evaluate it completely. A broad

class of methods called approximate Bayesian computation (ABC) seeks to directly

generate samples from the posterior distribution without evaluating the likelihood at

all. Such methods are the subject of considerable contemporary research—Sisson et

al. [Sis18] give a comprehensive survey.

Exploring and interpreting the posterior

�e dual problem to encoding prior andmodel assumptions into probability measures

is that of decoding inferences from the posterior [Kai06, §3.5]. In the previous

paragraphs we described how, given a particular value θ∗, the prior and likelihood

(or at least some approximation to it) can be evaluated pointwise. �is is of course

insu�cient to perform inference by itself—the parameter spaceΘ needs to be explored

to reveal the structure of the posterior measure p(θ∣Y). In e�ect this means that

a procedure needs to be designed to choose a set of values θ1, θ2, . . . for which the

posterior should be evaluated.
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A simple approach that may work when the dimension of Θ is small (and where

the subset Θ† ⊂ Θ in which p(θ∣Y) takes high values is known or easily found) is

evaluating a pre-determined set of values—chosen on a grid, say—in a procedure

sometimes termed quantisation. A much more general approach is to construct an

algorithm to sample from p(θ∣Y). We expand on this idea in Section 1.2.2.

Assuming now that the posterior distribution p(θ∣Y) has been characterised in some

way, the next step is to interpret it. While we have noted that the core principle of the

Bayesian approach to inverse problems is that of returning a full posterior probability

distribution rather than simply a point estimate as in equation (1.3), probability

distributions are di�cult to interpret in themselves.

As a result, typically some estimator θ̂ is chosen to summarise the posterior measure—

commonly the maximum a posteriori estimator θ̂MAP = argmaxθ∈Θ p(θ∣Y) or some

estimator based on minimising a pre-speci�ed loss function, such as the mean esti-

mator θ̂L2 = Eθ(θ∣Y) (which minimises L2 loss) or the median estimator θ̂L1 (which

minimises L1 loss).6 One clear advantage of having access to the full posterior dis-

tribution is that other statistics can also be calculated, from which it is possible to

make statements about the degree of con�dence in the reported estimator, such as

Var(θ∣Y). If the aim is to track the uncertainty in the conclusion, these additional

quantities are essential.

It is also worth noting that if the inference procedure forms part of a larger chain of

computations, it may in fact be the posterior parameter samples themselves that are

the useful inputs to the next stage of the process.

1.2.2 Approximate inference and Monte Carlo methods

As alluded to in the previous section, an ever-present feature of practical Bayesian

analysis is the requirement to deal with well-de�ned but computationally intractable

quantities. �e e�ective approximation of such quantities is one of the central �elds

of research in modern computational Bayesian statistics. Let us �rst consider the

canonical example. Consider the parameter inference problem described in Section

1.2. We assume that, given a particular value θ∗, the prior p(θ∗) is exactly evaluable.
Let us also assume here that the likelihood function L(Y ; θ∗) is also evaluable.

Substituting the likelihood L(Y ; θ) for the sampling distribution p(Y ∣θ) in equation

(1.4) and noting that, as probability measures, the integral over the parameter space

6�e median estimator (for univariate θ) can be expressed mathematically by de�ning the cumula-

tive distribution function F(θ∣Y) ∶= ∫
θ
−∞ p(θ′∣Y)dθ′ and taking the estimator to be θ̂L1 = F−1(0.5).
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Θ of both sides must equal unity, we can write

p(θ∣Y) =
L(Y ; θ)p(θ)

∫Θ L(Y ; θ)p(θ)dθ (1.6)

From this it is clear that the seemingly innocuous task of determining the posterior

p(θ∣Y) actually requires the evaluation of an integral. Furthermore, except for in

extremely limited cases—when the prior and likelihood form a conjugate pair—this

integral has no closed form solution. It must therefore be approximated, and if

the dimension q of Θ is even moderate, classical quadrature procedures become

unfeasible, since the number of grid points required grows exponentially with q

[Rob04, §4.3]. �e standard approach is therefore based on Monte Carlo simulation.

�e Monte Carlo method is a sampling-based approximation method for integrals

which can be cast as expectations with respect to a probability measure. In the case

of Bayesian inference, the derived statistics of the posterior measure p(θ∣Y) that are
used to summarise it, such as its expectation or variance, are all expressible in terms

of such expectations. Speci�cally, for some square-integrable function g, we have by

the de�nition of expectation

Eθ(g(θ)∣Y) = ∫
Θ
g(θ)p(θ∣Y)dθ (1.7)

(For g(θ) = θ, we recover an expression for the posterior mean.) �e Monte Carlo

method follows from the Law of Large Numbers, which states that given a set of

independent and identically distributed samples θ[1], θ[2], . . . , θ[K] drawn from a

probability measure, their ergodic average converges to the mean of this measure

as K → ∞. For our posterior measure p(θ∣Y) we therefore have, given K samples

θ[1], θ[2], . . . , θ[K] ∼ p(θ∣Y), the approximation

Eθ(g(θ)∣Y) ≈ 1

K

K

∑
k=1

g(θ[k]) (1.8)

�is is all very well if we are able to draw samples at will from the posterior, but the

expression (1.6) makes it clear that since all we can do is evaluate it in unnormalised

form, this is not completely trivial. �e canonical solution is to implement a Markov

chain Monte Carlo (MCMC) algorithm [Rob04, §7], a class of procedures which are

able to generate (correlated) samples from p(θ∣Y) given only an ability to evaluate

an unnormalised version of its density.

�e prototypical example of MCMC is the Metropolis–Hastings algorithm [Met53;

Has70], whichworks by constructing an ergodicMarkov chain on the space Θ that has

stationary distribution p(θ∣Y), and relies on de�ning a transition kernel q(⋅∣θ) that
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generates candidate samples at each stepwhich are then accepted or rejected according

to a speci�c rule. Comprehensive studies of the foundations of this principle are given

in Robert & Casella [Rob04, §7], Liu [Liu01, §5], and Gelman et al. [Gel13, §11].

Another MCMC algorithm, o�en employed when the target distribution is multidi-

mensional and conditional densities of subsets of the variables are available, is Gibbs

sampling [Gem84]. Gibbs sampling can be combined with (and even nested in) the

Metropolis–Hastings algorithm in various ways, producing a large class of Markov

chain-based sampling algorithms. Furthermore, an enormous �eld of research exists

on improving the e�cacy of these methods—for example to reduce correlation in the

chain, or to allow the chain to reach its stationary distribution more quickly, or to

allow it to explore the entire parameter space Θ without getting either ‘stuck’ or ‘lost’.

�e references in the previous paragraph all give extensive discussion of these topics.

In Section 4.4.3, we describe anMCMC algorithmwhich is a modi�ed form of the pre-

conditioned Crank–Nicolson algorithm of Cotter et al. [Cot13]. We use this method

to undertake sampling in a di�erent application—within a numerical algorithm itself,

rather than in parameter space. �ere we discuss the reasons for choosing thismethod,

and an assessment of its performance for the task at hand.

We return once more to the subject of MCMC sampling in Section 5.4.1, where we

discuss the challenges of sampling from the posterior p(θ∣Y) in the case of the speci�c
type of problem we are tackling there, and consider various strategies for overcoming

these di�culties.

1.3 differential equation models

�e primary objects of our study are inverse problems in which evaluating the likeli-

hood involves the solution of a implicit equation. �is almost universally implies that

the likelihood cannot be exactly evaluated pointwise. A common case found in many

models in the applied sciences is where the de�ning implicit relation is in the form of

an system of ordinary di�erential equations (ODEs).

We will proceed in a more mathematically precise fashion, and relate our description

to the notation introduced in Section 1.1. Consider a time-dependent dynamical

system from which instantaneous experimental measurements can be taken. �e

usual scienti�c interpretation is to model such a phenomenon as if there were some

underlying process x(t), with x ∶ R→ Rd a function and t ∈ R, evolving according
to governing laws—of physics, chemistry, economics, biology—able to be succinctly

described by a di�erential equation, such as the following:

d

dt
x(t) = f (x(t), t, θ) x(0) = X0 (1.9)
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It is typical for such a model to have free parameters θ ∈ Rq, the true values of which

are unknown, and which make a consequential di�erence to the model’s output. Per

the discussion in Section 1.1, we assume that these parameters fully specify the model,

and that as such model inadequacy does not come into play. �e usual model based

on this setup is a regressionmodel which takes the solution function xθ(t) of equation
(1.9) as the regressor, and the data Y as a set of measurements of this process, each

independently corrupted by additive noise.7

Note that we have exactly speci�ed the value X0 of the solution xθ at t = 0. �is

makes the ODE into an initial value problem (IVP). From the perspective of scienti�c

modelling, this is a useful and widespread type of ODE which can be thought of as

tracking the evolution of a time-dependent system with known starting condition.

For example, many common predator-prey models typically assume that the initial

populations are known, and then evolve according to the dynamics de�ned by the

model [Fre80, §II; Bra11, §1.1].

�e initial value is also requiredmathematically, since without this additional informa-

tion the ODE is not guaranteed to have a unique solution. Deu�hard & Bornemann

[Deu02, §2] point out that, while long-established scienti�c models may be well-

understood to possess unique solutions (it may “appear to be obvious in the particular

scienti�c context”), this mathematical certainty is required in order that new models

can be proposed and analysedwith con�dence. Proposedmodels which aremathemat-

ically badly-behaved are unlikely to be of much use to the scientist. Furthermore, if

the aim is parameter inference, we want to be assured that the existence or uniqueness

of solutions is not a�ected simply by varying θ.

1.3.1 Basic theory of initial value problems

�e discussion above motivates us to state the following central existence and unique-

ness result for initial value problems, known as the Picard-Lindelöf�eorem. We

�rst state precisely what we mean by a solution to a di�erential equation [Cod55, §1]

and recall the de�nition of Lipschitz continuity for real functions.

Definition 1.1 A solution to the initial value problem (1.9) is a continuously

di�erentiable function xθ ∶ I → Rd making (1.9) into an identity, where I is an interval

in R containing the origin.

Definition 1.2 A function f ∶ Ra → Rb is (globally) Lipschitz continuous if there ex-

ists a number L f > 0 such that for all v ,w ∈ Ra, it holds that ∣ f (v) − f (w)∣ < L f ∣v −w∣.
7�e notation x(t) in equation (1.9) indicates a function considered as an input variable of the

di�erential equation, whereas xθ(t) represents the solution function given a particular θ. Later, we
will o�en simply write x and xθ respectively.
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Theorem 1 (Picard–L indelöf Theorem) Fix θ ∈ Θ ⊆ Rq and de�ne

the function fθ ∶ Rd × R → Rd by (x , t) ↦ f (x , t, θ). Now suppose fθ is Lipschitz

continuous in its �rst argument and continuous in its second. �en the initial value

problem (1.9) has a unique solution.

Proof. Rigorous proofs of this technical result are given in Arnol’d [Arn92, §31] and

Coddington & Levinson [Cod55, �m. 3.1].

d Remark 1.1 An extension to the Picard–Lindelöf�eorem shows that any solu-

tion on the interval I can be continued into the future and the past up to any �nite t,

which is su�cient for our purposes. Details are available in the given references. d

d Remark 1.2 Existence of at least one solution is implied by mere continuity

as a result of the Peano Existence �eorem [Cod55, �m. 1.2]. By contrast, the

uniqueness result does require Lipschitz continuity—it is easy to �nd non-Lipschitz

functions f for which multiple solutions exist. Conversely it is also true that many

common models based on non-Lipschitz functions do possess unique solutions. All

of the technical results in this thesis assume Lipschitz continuity, though many of

our experiments involve non-Lipschitz functions.8 It is usually the case that the proof

techniques required to give equivalent results in the non-Lipschitz class are more

complex. Since this type of analysis is not our central focus, we simply note this fact

with this remark. d

d Remark 1.3 �ough the existence of the solution xθ to (1.9) has now been

established, in the overwhelming majority of cases this solution is not available in

closed form. What this means is that in general we cannot explicitly exhibit the

mapping t ↦ xθ(t) such that, given a particular value t∗, we can return its exact value

xθ(t∗). �is fact is of supreme importance in the remainder of our study. d

Before returning to the statistical context which is our central focus, we make some

further minor mathematical observations relating to equation (1.9). We introduced

this equation as a �rst-order, non-autonomous di�erential equation and the following

results account for the apparent lack of generality in this de�nition.

Proposition 1.1 An nth order initial value problem of the form

dnx

dtn
= f ( dn−1x

dtn−1
,⋯, dx

dt
, x , t, θ)

x(0) = X0 ,
d

dt
(0) = X′0 , . . . ,

dn−1

dtn−1
(0) = X

(n−1)
0

(1.10)

can be rewritten as a system of �rst order equations of the form (1.9).
8Gri�ths & Higham [Gri10, p. vii] assert that the Lipschitz condition “fails to be satis�ed by most

realistic ODE models”.
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Proof. De�ne variables x1, x2, . . . , xn such that

dx1
dt

= x2 ,
dx2
dt

= x3 ,
dxn−1
dt

= xn ,
dxn
dt

= f (x1, . . . , xn , t, θ)
x1(0) = X0 , x2(0) = X′0 , . . . , xn(0) = X(n−1)0

�en the vector x = (x1, x2, . . . , xn)T satis�es (1.9).

Proposition 1.2 Any non-autonomous IVP (one in which f depends on the

variable t independently of x) can be transformed into a system of autonomous IVPs

(where an augmented function f ∗ only depends on t through x).

Proof. Let dx/dt = f (x , t, θ) with x(0) = X0 as in (1.9). If we write u = (x , t, θ)T ,
f ∗(u) = ( f (x , t, θ), 1)T and u(0) ≡ U0 = (X0, 0)T , then we have the equivalent

autonomous system du/dt = f ∗(u).
�ese two simple results justify our continued consideration of �rst-order problems

only and, furthermore, allow us to consider only autonomous problems without loss

of generality.9 As a consequence of Proposition 1.2, henceforth we will usually write

the function de�ning the ODE with two arguments, i.e. as f (x , θ). We now return to

the statistical model we intend to consider.

1.4 parameter inference in ode models

�e statistical model given in Section 1.3 is described mathematically as follows:

Yj = xθ(tYj
) + ε j , dx

dt
= f (x , θ) , x(0) = X0 , ε j

iid
∼ N (0, σ 2) (1.11)

Here, the vectors of measurement error εi are taken to be realisations of zero-mean

Gaussian random variables, and the observation operator G from equation (1.2) is

simply the identity operator. Recall that given data Y and model function f , the

inverse problem is to ask for the value of θ which best explains Y . A generalisation is

possible to the situation in which X0 is unknown—in this case it should be treated

as an additional parameter of the model and appended to θ. Note that this does not

contradict the existence result in Section 1.3.1—we would merely be modelling our

prior uncertainty about the value of X0 and attempting to draw inference about it in

the standard Bayesian way.

9�ere is a sense in which the generalisation to non-autonomous IVPs would be super�uous
anyway, since when discussing the probabilistic interpretation of ODEs from Chapter 2, we assume
that t (as the independent variable) is always known. As a result, we do not in fact need to consider
non-autonomous IVPs in the service of our main contribution.
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�is particular parameter inference problem has been extensively studied, due in part

to its challenging nature. Discussion of the issues involved, and surveys of various

available approaches, are given by Ramsay et al. [Ram07], Campbell [Cam07] and

Xue et al. [Xue10]. �e standard approach (cf. Section 1.1.1) is a form of non-linear

least squares, where parameter values are optimised [Bie86] or sampled [Gel96]—

depending on whether a non-Bayesian or Bayesian approach is taken—by examining

the goodness of �t for each value. �e obvious problem with this is that, as noted in

Remark 1.3, the function xθ is not available in closed form, even if θ is fully speci�ed.

Clearly, some numerical method has to be employed in order to approximate the

solution xθ . Such methods fall into two main categories [Gea71, §1.2]. �e �rst

type approximate xθ(t) by the sum of a �nite number of independent functions, for

example Chebyshev polynomials [Cle57]. �ese procedures produce a function z(t)
approximating the solution xθ(t).
�e second type produce a discrete path Z ≡ (Z0, Z1, . . . , ZN) approximating the so-

lution function xθ(t) at only the discrete points (t0, t1, . . . , tN), though interpolation

is possible to form a continuous approximation z(t). In this thesis we focus on this

second category of iterative numerical method, and survey several classes of them in

Section 3.1 in preparation for our own contribution.

Returning to the inverse problem, the naive response is to simply proceed as if

the approximate solution were equal to the exact one. However, this approach is

fraught with problems. Plainly, the residual sum-of-squares (1.3) calculated using

this approach will not be exact. Furthermore, if the numerical approximation Z is

not de�ned at the same time points TY as the data Y , interpolation will be required,

introducing further inaccuracy.

Both of these issues will result in errors in whichever optimisation or sampling pro-

cedure is to be used, with knock-on e�ects for inference on θ. A study of the latter

phenomenon in the Bayesian context, complete with illustrative plots, is given in

Conrad et al. [Con16], and we recreate and extend some of these results in Chapter 5.

Some quantitative bounds on the total variation distance between posterior proba-

bility measures for θ (and bias in derived estimators θ̂) arising from the numerical

approximation of the forward solution xθ(t) are given by Donnet & Samson [Don07]

and Capistrán et al. [Cap16].

A further problem is the di�culty of actually implementing an algorithm to e�ectively

explore the parameter space Θ, which is required for the reasons given in Section

1.2.1. For a typical ODE-de�ned forward model, the residual sum-of-squares (1.3) will

depend very sensitively—and usually unpredictably—on θ, posing challenges for any

search algorithm [Cam07]. Marlin [Mar00; quoted in Ram07] warns that an error

level of the order 25% should be expected in parameter estimates inferred using this
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approach. Campbell [Cam07, §2.3] gives a concise survey of several methods, both

Bayesian and non-Bayesian, speci�cally targeted at solving this problem.

A parallel issue is that this type of procedure can be computationally very expensive.

In order to evaluate the goodness of �t of a single parameter value, a full numerical

integration of the entire di�erential system is required.10 Much of the literature

relating to inverse problems in ODE models is focused on avoiding this expense by

de�ning a cheaper surrogate model which can approximate the result of integrating

the system without actually doing so. �is general idea goes at least as far back as

Varah [Var82] and several papers are still published on it every year. Xue et al. [Xue10]

contains numerous references. �e common shortcoming is that the error introduced

by working with a surrogate system rather than the true one is either ignored or only

considered asymptotically.

Approaches which de�ne probabilistic surrogate models also exist—for example

Graepel [Gra03] or Calderhead et al. [Cal09]. While these methods are also pri-

marily about reducing computational cost, the probabilistic structure at least allows

uncertainties to be considered non-asymptotically, and permits the straightforward

treatment of partial-data systems. We will touch on some of these methods in Section

1.4.2. Finally, we note an interesting sequential approach, in which the surrogate

model is formed with the use of a particle �lter, proposed by Arnold et al. [Arn13].

Despite the discussion above, it is not the case that the only response to the high com-

putational cost of the naive approach is to try to avoid solving the di�erential system

entirely. It also motivates the desire to properly quantify the error introduced by the

numerical integration. In this case, the hope is that the scale of the approximation

error can in some way be balanced against the other unavoidable sources of error

in the problem. �is having been done, it may (for example) be possible to justify

running the numerical computation at a coarser resolution. �is thought forms the

starting point for the �eld of probabilistic numerical methods (PN) [Hen15] and is

central to our work. We survey these methods extensively in Chapter 2.

1.4.1 Modelling the numerical uncertainty

In this sectionwe formalise the statistical structure of the parameter inference problem

arising from the forward model given in (1.11). We �rst address the setup correspond-

ing to the naive Bayesian solution described in Section 1.4, and then highlight the

way in which our approach will be di�erent.

10If an MCMC approach is employed, this problem may be exacerbated by the regular rejec-
tion of expensively calculated model solutions—a signi�cant amount of computation can be wasted
in this manner.
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In any Bayesian analysis, inference must be performed over all unknown variables

a�er conditioning on all known variables. For the time being, let us assume that

knowledge of all of θ, X0 and (the functional form of) f is analogous to complete

knowledge of the solution xθ . Assuming that X0 and f are both �xed, this is equivalent

to the statement that knowledge of the regressor function xθ of themodel is equivalent

to knowledge of the parameter θ. �is gives the Bayesian model decomposition

p(θ , σ ∣Y) ∝ L(Y ; θ , σ)p(θ)p(σ) (1.12)

In accordance with (1.11) and the assumptions in the previous paragraph, the term

L(Y ; θ , σ) is Gaussian and proportional to∏M
j=1 exp(−(Yj − xθ(tYj

))2/2σ 2).
We now return to our primary contention—that the premise that xθ is fully speci�ed

by (θ , X0, f ) is incorrect and that as a result the setup (1.12) is inadequate. In an

ODE model, xθ cannot be fully speci�ed, due to the approximation error which

inevitably arises in its numerical evaluation, and we must therefore be uncertain

about its true value. �e Bayesian approach should be to model this uncertainty

rather than ignore it. We therefore specify a non-degenerate probability measure

p(x∣θ) which mathematically represents our lack of knowledge about the true value

of xθ . �e result is a hierarchical structure with separate distributions representing

the measurement error of the data Y and the approximation error of the regressor xθ .

�e rest of this thesis will be concentrated on the subtle issue of characterising the

latter measure.11

As we will come to see, several di�erent approaches are possible for treating p(x∣θ).
In each case, we will be required to take certain decisions a�ecting the algorithms

we use to approximate it. Such decisions could include choosing the step-size h in

an iterative integrator, or indeed which method we choose in the �rst place. We

represent these algorithmic degrees of freedom, broadly construed, by a parameter ϕ.

In other words, while θ constitutes the parameters of the model, ϕ are the parameters

representing the numerical procedure used to approximate x. (�e forthcoming

sections will provide much greater detail on this abstract description.)

If the algorithmic degrees of freedom were not �xed in advance, ϕ would theoretically

need to be included as a full part of the posterior model. However, we typically will �x

ϕ in advance of running a simulation. �is is because we are interested in understand-

ing the e�ect of a speci�ed numerical method on the solution of the forward problem
11An interesting half-and-half approach is suggested by Tarantola [Tar05, §1.3], who uses a Bayesian

setup to directly characterise L(Y ; θ , σ) while explicitly acknowledging that this distribution repre-
sents two di�erent sources of error—measurement error and ‘theoretical uncertainties’, the latter
corresponding to model inadequacy, numerical error, etc. �ey posit that these two sources of error
“generally produce uncertainties with the same order of magnitude” and models them as Gaussian
distributions scaled in accordance with this principle, but theoretical justi�cations for this statement
are not provided.
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and, eventually, the inverse problem. A data-conditioned posterior p(ϕ∣Y) is not
a meaningful object—experimental data manifestly does not provide information

about the numerical method to be used in a statistical procedure implemented to

analyse it a�er its collection. As a result, we give the problem the following structure:

p(θ , σ ∣Y , ϕ) ∝ L(Y ; x , σ)p(x∣θ , ϕ)p(θ)p(σ). (1.13)

d Remark 1.4 For convenience, we will o�en refer to these distributions ver-

bally as follows: p(θ , σ ∣Y , ϕ) is the ‘full posterior’, L(Y ; x , σ) is the ‘data likelihood’,
p(x∣θ , ϕ) is the ‘measure over the numerical solution’ or similar, while the remaining

distributions are parameter priors. d

At this stage it is worth reinforcing the conceptual point that p(x∣θ , ϕ) is a probability
measure representing our inescapable lack of knowledge of xθ given the computational

tools at our disposal, represented by ϕ. �e solution function xθ is a deterministic

object—not random in a truly stochastic sense—yet this setup as a description of

epistemic uncertainty is completely valid within the Bayesian framework. In fact, not

only is it valid, but it is to be formally treated in exactly the same way as uncertainty

arising from true randomness. �is principle is discussed—in the related but simpler

context of round-o� error occurring in the digital representation of real numbers—in

exactly this way as far back as Hull & Swenson [Hul66] and Henrici [Hen62, §1.6].

We will examine and compare a number of approaches to forming a statistical model

for the measure p(x∣θ , ϕ). Each is the product of a slightly di�erent branch of aca-

demic research, and the aims of each—along with their respective shortcomings—are

also di�erent. Our contribution, which starts from Chapter 3, is the extension and

generalisation of one of these paradigms.

1.4.2 Gradient matching

Before covering in detail in Chapter 2 the way in which the emerging theory of proba-

bilistic numerical methods treats this problem, we take a brief diversion to consider a

separate but related strand of research. As we will see, the ultimate shortcoming of

this approach will be instructive in understanding the way in which PN is di�erent.

�e concept of de�ning a distribution like p(x∣θ , ϕ) as part of a Bayesian analysis of

the form (1.13) has not always taken as its starting point the desire to model numerical

error. A series of articles—Calderhead et al. [Cal09], Dondelinger et al. [Don13],

Barber &Wang [Bar14] and Macdonald et al. [Mac15]—are all concerned primarily

with surrogate modelling, by which is meant a desire to perform parameter inference

without actually solving the ODE.
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�e central principle in these papers is to match the gradients between the full and

surrogate models and, following a Bayesian approach, include the parameters of the

surrogate model as part of the inference process.12 A consequence of this is the intro-

duction of a probability distribution p(X∣θ , ϕ) akin to the measure over numerical

solutions found in (1.13), though we again stress that the origin of this is not the

explicit modelling of numerical uncertainty. (In fact, we will argue that it cannot hope

to do this even in theory.) �e actual construction is subtly di�erent across the four

articles—we give a rough description closest to that in Dondelinger et al. [Don13].

Firstly we note that the theory proceeds in a discrete setting, so the object of interest

is X—the set of exact values of xθ(t) at times t0, . . . , tN . Starting from the familiar

premise that X is not exactly calculable, a Gaussian process (GP)13 prior p(X∣ψ) is
de�ned for it, and the data Y used to derive a posterior GP interpolation [Ras06,

§2.2], giving p(X∣Y , σ ,ψ). �is is done in the standard Bayesian way, namely

p(X∣Y , σ ,ψ) ∝ p(Y ∣X , σ)p(X∣ψ) (1.14)

In this expression, as in equation (1.2), σ is the variance of the Gaussian measurement

error. ψ represents the covariance structure of theGaussian process prior p(X∣ψ). Due
to the linearity of the di�erential operator, a Gaussian process model for the derivative

Ẋ can then immediately be written down as p(Ẋ∣ψ)—the required transformations

for the mean and covariance functions under this operation are given by Adler [Adl81,

�m. 2.2.2]. (In the context of ODE models, this fact was previously exploited by

Solak et al. [Sol03].)

In parallel, the GP-generated posterior values for X can be passed to the function

f (⋅, θ) de�ning the ODE. Along with the signi�cant assumption that these are dis-

tributed around the true derivatives with Gaussian error of variance γ, a secondmodel

for the derivative can be written down as p(Ẋ∣X , θ , γ) = N ( f (X , θ), γ ⋅ Id). �ese

two models can then be combined by simply multiplying the densities together—this

procedure is called ‘product-of-experts’ [Hin02].

12�is contrasts with earlier surrogatemodelling approacheswhich are either based ondeterministic
surrogates, such as splines or basis function expansions [Var82; Ram07], or are probabilistic but require
regularisation parameters to be set in advance [Gra03].

13We omit a long introduction to Gaussian processes, since they are now very well known. �e
standard reference for foundational Gaussian process methodology in the context of Bayesian inference
is Rasmussen & Williams [Ras06]. However it is will be useful for us to note here a �exibility in
terminology which we will continue to use later when describing our own contribution in Chapter 3.
A Gaussian process is de�ned as a distribution over functions, so that x(t) ∼ GP(m(t), k(t, t′)) has
covariance function k(⋅, ⋅). However the articles referenced in this section employ the slight abuse
X ∼ GP(m,K) for discrete X, where in this setting K is a matrix of covariance function values
calculated from the kernel (the ‘Gram matrix’). Of course, this latter formulation is simply a �nite-
dimensional Gaussian and could be notated asN(m,K), but the speci�c kernel-derived covariance
structure means it is convenient to continue using the language of Gaussian processes.
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�e resulting distribution is p(Ẋ∣X , θ ,ψ, γ). Multiplying by the GP prior p(X∣ψ)
and then marginalising over the derivatives Ẋ gives p(X∣θ ,ψ, γ). �is is simply our

familiar distribution p(x∣θ , ϕ), with x considered discretely and with our general

algorithm parameter ϕ having been taken to include both ψ and γ, respectively the

algorithm parameters for the two constituent parts of the model. We can then use

this as part of the procedure to infer θ, as in (1.13).

�is idea—and minor variations of it suggested in the other referenced articles—has

one signi�cant methodological shortcoming, which in our view recommends an

alternative approach. Closer inspection reveals that the �t of the surrogate model

occurs having conditioned on the data Y . �is is theoretically problematic, since

the structure of the model (1.13) now contains a cycle, in the sense of probabilistic

belief networks [Kol09, §3] or Bayesian networks [Pea85]. In words, the data is being

used to �t the hyperparameters of a likelihood model, which are subsequently used

to assess data �t. An obvious corollary of this point is that integrating an IVP in

isolation—the forward model alone, in a setup in which no experimental data is

available—is not possible using this method.

�is reasoning explains why the distribution p(X∣θ , ϕ) cannot here be taken to be a

pure model of numerical error since, as explained in Section 1.4.1, inference about

the uncertainty in an entirely numerical procedure should not be dependent on

experimental data.14

We have seen that, as an approach to reducing computational expense, there is some

merit in working with a surrogate model and attempting to simply minimise the

discrepancy between it and the true solution. However if wewish to tackle the problem

of modelling the numerical error itself, we require a di�erent approach. �e latter

strand of thinking is a core feature of the PN paradigm, which we explore in detail in

the next chapter.

14Separately to the discussion in this section, the speci�c statistical setup in Barber &Wang [Bar14]
also throws up an interesting consistency issue as a by-product of the way the joint model connecting
the two expressions for the gradient is formed (this paper does not adopt the product-of-experts
approach of Calderhead et al. [Cal09] and Dondelinger et al. [Don13] for this task). Macdonald et
al. [Mac15] motivate their own work with a scrupulous analysis of this issue, exposing the source
of the problem. Careful thought reveals that this inconsistency may also apply to the methods we
introduce in Chapter 3—indeed, the resolution of this problem is one of the main motivations for the
the improved concept to be described in Chapter 4. We return to this speci�c point in Section 4.1.1.
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2
PROBABILISTIC FORMULATION OF

ODE SOLVERS

In this chapter, we consider in detail a framework for the probabilisticmodelling of the

uncertainty arising from numerical computations. In the context of ODE solvers, this

idea was introduced by Skilling [Ski91], building on themore general ideas of Diaconis

[Dia88] and O’Hagan [OHa92]. Skilling argues that the process of integrating an

ODE should return a probability distribution over numerical solutions rather than

simply a point value, and suggests a way to do it within a Bayesian framework. Note

that, unlike in the case of surrogate models discussed in Section 1.4.2, this distribution

is explicitly intended to represent the uncertainty arising from the application of the

approximate numerical method.

�e core idea is that outputs of a numerical procedure are considered as ‘data’ and the

desired distribution over the inaccessible numerical solution p(x∣θ , ϕ) as a posterior
formed by combining this data with a functional prior for x. �is is approached

in the standard Bayesian way—namely by de�ning a likelihood and performing an

inversion using Bayes’ �eorem. �e di�erence between this setup and that described

by equation (1.14) is that a PN procedure is undertaken without conditioning on

experimental data, preserving the directionality of the hierarchical model (1.13), and

avoiding the clearly unsatisfactory situation where experimental data is used to draw

inference about the e�ect of a purely numerical procedure.

�e way in which this numerical data is collected and then incorporated—equivalent

to specifying the likelihood model—throws up a number of subtleties, and in this

chapter we will consider some approaches in detail. �e issues to be considered
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include foundational ones—do algorithms which purport to return a measure over

the numerical solution have appropriate technical properties?—but also ones of

interpretability and usefulness.

�e �rst of these might ask if can we make statements about limiting behaviours

which would satisfy both numerical analysts and statisticians. For example, does

the measure contract properly in the limit of in�nite computation? Is the output in

the non-limiting case satisfactory, measured against some appropriate metric—does

the �nite-computation behaviour match some expected and interpretable notion of

uncertainty?

�e second might ask whether we can construct algorithms which are based on

classical iterative numerical methods, collecting our data by following the path of

such a method. Furthermore, could we do this such that, for instance, the mean of the

derived probability measure would correspond to the path of the classical algorithm.

Can wemake the description of uncertainty encoded in p(x∣θ , ϕ) correspond in some

intuitive way to the numerical error of the classical method? �e complex nature of

ODE theory, and the plethora of numerical methods available to solve them, means

that these are highly non-trivial questions.15

Questions of this nature have evolved into an active research area of the �eld known as

probabilistic numericalmethods (PN) [Hen15]. In the context of the probabilistic solu-

tion of di�erential equations, the main frameworks have been developed—somewhat

in parallel—by articles such as Hennig & Hauberg [Hen14], Chkrebtii et al. [Chk13;

Chk16] and Schober et al. [Sch14]. We will consider these approaches in detail in

Section 2.1. A further strand, originated by Conrad et al. [Con16], has hitherto been

considered in the same group as these, though in our view it takes an approach dif-

ferent enough to be considered separately. Our own contributions extend this latter

paradigm, so we also consider it in detail, in Section 2.2 .

In passing, we note that similar ideas are also being used to study other numerical

algorithms, for example in the topics of integration (e.g. quadrature/cubature), lin-

ear algebra (e.g. matrix inversion/solution of linear systems) and optimisation (e.g.

gradient descent). �e common theme is the same—that the output of numerical

algorithms is treated as data and quantities of interest are inferred from them using

statistical techniques.

A survey article summarising this work has been published by Hennig et al. [Hen15],

and a review with comprehensive references is given by Cockayne et al. [Coc17]. A

15Contrast this situation with the modelling of round-o� error in Hull & Swenson [Hul63] men-
tioned in Section 1.4.1, in which the error εk in a real number rounded to k decimal places is modelled
with reasonable heuristic justi�cation as uniformly distributed over the interval of precision, i.e.
εk ∼ U[−5 × 10

−(k+1) , 5 × 10−(k+1)].
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connection between these algorithms is also made by Hennig et al. [Hen15]—in par-

ticular they state a ‘general recipe’ for a probabilistic numerical algorithms consisting

of a ‘generative model’ (which encodes the likelihood model for the numerical data)

and a ‘decision rule’ (which determines how the algorithm generates new data).

2.1 review of probabilistic ode solvers

Diaconis [Dia88] was amongst the �rst to suggest the use of Bayesian probability

theory to interpret the output of numerical algorithms as data and perform inference

on quantities of interest within this framework.16 �e focus of his paper is on a

Bayesian approach to numerical quadrature. Skilling [Ski91] �eshed out the concept

in the speci�c context of ODE solvers for the �rst time, in particular by considering

the values produced by repeated evaluation of the objective function f (⋅, θ) as the
procedure’s data, then formally de�ning a prior on the space of solution functions

and a likelihood encoding the way in which the generated data should be assimilated.

�is general setup has been picked up by a number of recent papers, which we now

consider closely.

d Author ’s note �e order of presentation of the following literature review

does not strictly correspond to the chronology of the articles explored. �e aim is

not to provide a comprehensive historical record, nor focus on issues of precedence.

For example, the publication date of a journal article is in some cases signi�cantly

later than the release of its �rst version online. Furthermore as the �eld is seeing

rapid advances even at the time of writing, the ‘graph of dependencies’ between these

articles and various parts of our own contribution in later chapters is complicated. We

will try to make these clear where appropriate. Nevertheless despite its description as

a ‘review’, it is important to stress that the novel contributions of this thesis occurred

concurrently, rather than strictly a�er, some of the work included in this section. d

Hennig & Hauberg (2014)

Hennig & Hauberg [Hen14] e�ectively translate the ideas of Skilling [Ski91] into the

modern language of Gaussian processes. Here, and in the reviews of the following

articles, we will strip away the speci�c application, and simplify each method to

one-dimensional �rst-order IVPs. We will also translate into our own notation.

Firstly, a Gaussian prior measure ρ0 is set up on the function space X containing

possible solution functions x. Since di�erentiation is linear and Gaussian measures
16Similar ideas are also present in the earlier work by Larkin [Lar72]. While the formal statistical

structure of the problem is not developed there, the concept is advanced (at least in principle) of
deriving a probability measure over the space of possible solutions of a numerical procedure.
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are closed under linear transformations, it is helpful to think of this as a joint Gaussian

measure over the space (X , Ẋ ) encapsulating prior information about both x and

its �rst derivative ẋ—the reason for this will become clear in the next paragraph.

�e particular choice made in the article is to specify ρ0 to be a squared-exponential

Gaussian process de�ned by

x(t) ∼ ρ0 ≡ GP(µ0(t), k(t, t′))
µ0(t) = X0 , k(t, t′) = α exp(−(t − t′)2

2λ2
) (2.1)

Here, in writing µ0(t) = X0 we mean that µ0 is a constant function taking the value

X0 for all t. �is mean function serves to condition on the initial value X0. �en,

for each i ∈ [0,N − 1], an ‘observation’ Fi+1 ≡ f (µi(ti+1), θ) is collected, where the
evaluation point µi(ti+1) is the mean of the measure ρi—representing the current

state of knowledge of x—at time ti+1.17

Following the key idea in Skilling [Ski91], a Gaussian error model is then assumed for

these observations with respect to the true solution derivative ẋ(t). �is once again

exploits the linearity of di�erentiation, and the likelihood for each point follows as

Fi+1∣ρi ∼ N (ẋ(ti+1), Λi+1) (2.2)

where Λi+1 is a variance parameter in derivative space. Finally, this likelihood term

is combined with the prior in a Bayesian inversion to give the (i + 1)-times updated

posterior ρi+1 over X by ρi+1 ∝ p(Fi+1∣ρi) ⋅ ρi .
A�er N points have been collected and the measure ρN determined, its variance at

time t is then interpreted as the uncertainty in x(t) arising from the computation.

Since everything is Gaussian, the mean and variance of this distribution can be given

explicitly.

�e parameters {Λi}Ni=1 and λ are set using very rough calibration arguments—the

topic of method calibration is one of our primary concerns and will be discussed

further in Section 4.3. In fact, in Hennig et al. the calibration procedure is undertaken

by conditioning on experimental data Y and hence no method is proposed which

would be able to calibrate the uncertainty in the forward model alone. �is means

the methodological inconsistency described in Section 1.4.2 persists.

�e method of choosing the input points t1, . . . , tN at which to evaluate f (x(t), θ) is
also only brie�y remarked upon. A pre-determined grid is suggested, but the ordering

of the calculations—which, due to the way the algorithm is designed, will have an

impact on the eventual inference—is not addressed.

17An extension by Hauberg et al. [Hau15] generalises to the case where the function is evaluated
with noise; i.e the observation Fi+1 is a non-degenerate random variable.
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Chkrebtii et al . (2013/2016)

In the PhD thesis by Chkrebtii [Chk13] and the subsequent paper [Chk16], a variant

algorithm is given which also builds on Skilling’s original formulation but contrasts

from Hennig et al.’s paper by adopting an explicitly sequential approach and a clearer

principle for setting the derivative observation model (2.2). Furthermore a proof is

given, absent from Hennig et al., that the mean of the measure ρN de�ned over the

numerical solutions contracts in the N →∞ limit to the true solution x(t).
In this scheme, the initial functional prior is de�ned over the derivative space Ẋ then

integrated to give the prior on the solution space X , rather than the other way round.

As noted in the previous section, the two formulations are equivalent, so we persist

with the ρ notation. Here, a di�erent covariance structure is suggested—one de�ned

in terms of the convolution of a square-integrable kernel function Rλ ∶ R ×R → R

with itself. (In the paper, several possible kernels Rλ are posited and compared.)

Speci�cally, the prior model is given as

ẋ(t) ∼ ρ0 ≡ GP(µ̇0(t), k̇0(t, t′))
µ̇0(t) = ∗ , k̇0(t, t′) = α ∫

R

Rλ(t, z)Rλ(t′, z) dz (2.3)

and then,18 integrating,

x(t) ∼ GP ( ∫ t

0
µ̇0(z) dz, ∫ t

z=0
∫

t′

z′=0
k̇0(z, z′) dz dz′) (2.4)

Here, as before, the zero subscripts denote that these are the GP measures at the

opening step—having conditioned on the initial value but with no further updates

having been made. �e procedure continues sequentially, using the same concept of

treating function evaluations Fi as observations—though here they are called ‘model

interrogations’. A key di�erence is that the next datum Fi+1 is determined by sampling

from the predictive posterior measure ρi(ti+1) and passing this sample to the function

f , rather than simply evaluating at the current mean.

As in Hennig et al., a Gaussian error model is assumed for the derivative, but here the

covariance is taken to be the uncertainty of the derivative in the current update of the

model. �us we have

Fi+1∣ρi ∼ N (µ̇i(ti+1), k̇i(ti+1, ti+1)) (2.5)

�is approach resolves the problem of how to set Λi in (2.2), though naturally the

resolution is merely a modelling choice (and indeed is justi�ed by the authors only on

18�e ∗ in (2.3) arises because the issue of incorporating the initial value X0 when the prior is
initially de�ned over the derivative requires an extra constraint. Details are straightforward and are
given in Supplement D.1 of [Chk16] and as such we omit the full discussion.
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those terms). A further adjustment is that the likelihood model is centred around the

predictive mean (which is known) rather than the true derivative (which is unknown).

As before, this error model is then used to update the predictive distribution via

ρi+1 ∝ p(Fi+1∣ρi) ⋅ ρi .
�e result is a posterior Gaussian measure ρ[1]N , arrived at by conditioning on one

complete set of sampled observations F[1]1∶N . �e square-bracketed superscripts refer to

the fact that this is the �rst run of the algorithm. Multiple runs produce multiple such

measures ρ[2]N , . . . , ρ[K]N , each di�erent since the sampled observations Fi are di�erent

each time. �e measure ρN formed by the uniform mixture of these individual

measures then represents the posterior over the solution function x(t).
A convergence result is also given, which states that as the step-size h (≡ ti+1 −
ti), spread parameter λ and prior variance scale α all tend to zero, the posterior

distribution returned by the probabilistic integrator converges in mean (L1) to the

true solution. In other words, if xθ is the true solution, it holds for all t ∈ [0, T] that
EF ∣ρN(t) − xθ(t)∣→ 0 as h, λ, α → 0 (2.6)

d Remark 2.1 In the preceding discussion, we introduced the more concise nota-

tion ρi to represent measures over the function space X of solution functions x(t).
�is allowed us to concisely write ρ0 for the prior—equivalent in the notation used

earlier to p(x∣ϕ); and ρN for the posterior—equivalent to p(x∣F1, F2, . . . , FN , ϕ).19 In
these expressions, the algorithm parameter ϕ is taken to include the prior modelling

choices made in (2.1) and (2.3), including the form of covariance function k(⋅, ⋅) and
hyperparameters α and λ, as well as the hyperparameter Λ in equation (2.2).

�e way in which the posterior measure ρN relates to the ‘measure over numerical

solutions’ p(x∣θ , ϕ) in our original model formulation (1.13) can be seen by noting

that all the information about θ gathered by the algorithm is carried by the N model

interrogations F1, . . . , FN and thus the posterior ρN ≡ p(x∣F1, F2, . . . , FN , ϕ) is in fact

the same distribution as p(x∣θ , ϕ).
d Remark 2.2 We reiterate that the terms prior, likelihood and posterior in this

paradigm refer to an ‘inner’ Bayesian procedure focused on inferring the distribution

of x(t), in contrast to the ‘outer’ Bayesian inversion required to solve the inverse

problem represented by the model (1.13). d

19Fi can be interpreted as ⋃K
k=1 F

[k]
i in the case of Chkrebtii et al., where multiple instantiations

are run, each generating their own set of model interrogations.
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The algorithms compared

One consequence of the di�ering ways that the two schemes assimilate the data F into

their statistical models for x is that the process required to output an interpretable

posterior is of a fundamentally di�erent character in the two cases. In the case of

Hennig et al., the method of collecting the Fi by evaluating f (⋅, θ) at the mean of

the current measure means a full distributional posterior p(x(t)∣F , ϕ) ≡ ρN is avail-

able. Once the prior ρ0 and evaluation ordinates t1, . . . , tN are set and the algorithm

proceeds, the F here is fully speci�ed by the subsequent deterministic calculation.

By contrast, the sampling step is key to the method of Chkrebtii et al. Its e�ect is

that one run of the algorithm returns a measure p(x(t)∣F[k], ϕ) which is a posterior

for the solution conditional on a single realisation k of numerical data F. Multiple

realisations—computed by repeating the calculation with di�erent random seeds, in

the manner of Monte Carlo—are combined to give a mixture distribution which is

then taken to be the F-conditioned posterior ρN . �is is undoubtedly a richer model,

with a much greater degree of feedback from the ODE itself—in statistical terms, a

more informative likelihood—resulting in a non-parametric posterior measure.

Naturally, the Monte Carlo repetitions add computational expense. �e question of

whether this is a price worth paying is simply a version of the usual speed/accuracy

trade-o� familiar to algorithm designers everywhere. �at said, a theoretical point

noted by Kersting & Hennig [Ker16] is that, since the contraction of measure (2.6) is

an asymptotic result, the nature of the relationship between the empirical posterior

and the true solution is not clear a�er a �nite number of Monte Carlo repetitions.

Schober et al . (2014)

While the contributions of Hennig et al. and Chkrebtii et al. describe ODE-solving

algorithms which return probability distributions instead of point estimates, a key

shortcoming in both works is the lack of a relationship between their constructions

and established, classical IVP solvers. In particular, the choice of covariance function

in the Gaussian process priors entirely determines the solutions generated, and yet

none of the choices in these two papers correspond in any interpretable sense to

classical ODE methods.

�is issue was considered by Schober at al. [Sch14], who pointed out that particular

choices of covariance function in the Gaussian process prior ρ0 for x(t) give rise
to distributional solutions for x(t + h) with mean exactly equal to the output of a

classical Runge–Kutta method. �ey supply these covariances explicitly for orders 1

(corresponding to the forward Euler method; see Section 3.1.1), 2 and 3—though in

the latter two cases this requires an additional trick of taking the limit of the initial

time t0 → −∞. �e covariances are based on repeatedly integrating the covariance of
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Brownian motion kBr(t, t′) = σ2min(t, t′) for some σ 2
> 0 so that, for example, the

following once-integrated prior gives rise to a forward Euler step:

x(t) ∼ ρ0 ≡ GP(0, k↑1Br(t, t′))
k↑1Br(t, t′) = ∫

t

z=0
∫

t′

z′=0
kBr(z, z′) dz dz′

= σ 2 (min3(t, t′)
3

+ ∣t − t′∣min2(t, t′)
2

)
(2.7)

�is approach only guarantees a correspondence with the classical method for a single

time-step, since all subsequent time-steps can be viewed as solving a modi�ed IVP

resulting from the uncertain output of the �rst step. �is point is made in the paper

by Schober et al. [Sch14] themselves. Because of this restriction to a single time step,

they are unable to make claims about the global error properties of their probabilistic

solver. �e covariance structure is chosen speci�cally to align with the Runge–Kutta

estimate a�er one step and—but for this criterion—is of an unusual non-standard

form.20 �is observation calls into question the usefulness of the method to model

the second and subsequent steps of a longer integration.

Kersting & Hennig (2016) & Schober et al . (2018)

In the article by Kersting & Hennig [Ker16], extended and formalised by Schober et

al. [Sch18], an alternative approach is considered generalising in some respects the

earlier work of Schober et al. [Sch14]. Once again a prior model is proposed for the

solution x(t) and updated based on function evaluations, but here the construction

is explicitly cast as a stochastic �ltering problem [Øks98, §6].

In these papers, x(t) and its �rst q time derivatives are assumed to follow a Gauss–

Markov process that solves a pre-speci�ed stochastic di�erential equation (SDE).�e

parameter q—along with the SDE—can be chosen in order to make the output of

the �lter tally in expectation with a classical numerical integrator, in the manner

of the Runge–Kutta integrator of Schober et al. [Sch14]. In brief, by writing x and

its derivatives as a vector (x , ẋ , ẍ , . . . , x(q))T and forming the Itô-type relation (2.8),

standard results [Sär06,�m. 2.9] can be used to give the mean and covariance of x.

⎛⎜⎜⎜⎜⎝
dx

dẋ⋮
dx(q)

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 1 ⋯ 0⋱ ⋱

0 1

a0 a1 ⋯ aq

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

ẋ⋮
x(q)

⎞⎟⎟⎟⎟⎠
dt +
⎛⎜⎜⎜⎜⎝

0

0⋮
σ 2

⎞⎟⎟⎟⎟⎠
dBt (2.8)

20�is is even clearer in the case of the twice– or three times–integrated Brownian motion co-
variances given for higher-order Runge–Kutta methods, which involve higher and higher powers of
min(t, t′) and max(t, t′).
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Here σ2
> 0, Bt is a standard Brownian motion and (x(0), ẋ(0), ẍ(0), . . . , x(q)(0))T ,

the vector of initial values of x and its derivative, is assumed known. Choosing a j = 0

for all j ∈ [0, q]models x(t) as a q-times integrated Brownian motion, as in Schober

et al. [Sch14]. An alternative choice, that of taking aq = −c for some positive c > 0,

instead results in a q-times integrated Ornstein-Uhlenbeck process and is considered

in Magnani et al. [Mag17].

�e prior having been set, data is collected by the algorithm in the form of evaluations

of f (⋅, θ), which are assimilated into the model as observations of the �rst derivative

ẋ, in a manner similar to Chkrebtii et al. [Chk16]. �e fact that all distributions are

Gaussian means this can be done as in a Kalman �lter [Kal60]. At each step, the

algorithm returns a mean and covariance for the solution x(t) consistent with all

data collected so far. �is can be updated iteratively, meaning that the calculation

does not get more expensive as the integrator advances and more data are collected.

�e Kalman update equations can be found in Särkkä [Sär13, §4].

Relating this concept back to the sequential model updating approach of Chkrebtii

et al., it can be seen to constitute a structurally similar model, though both model

update and data generation steps are in this case performed in accordance with the

Kalman equations rather than by sampling predictive distributions. Details are given

in Kersting & Hennig [Ker16, §2.2] and Schober et al. [Sch18, §2.4].

�e papers which have developed this paradigm give various connections to classical

methods, though they are not always completely intuitive. For q = 1, 2 and 3, the

integrated Brownian motion prior tallies a�er one iteration (in mean) with the q-

stage Runge–Kutta method, as described in the previous section [Sch14]. For q = 1,

and with an additional function evaluation at the end of each step, the method is

equivalent to the trapezoidal rule [Sch18, Prop. 1] and for q = 2 it is equivalent to a

third order Nordsieck method, but only a�er an initial stabilisation period [Sch18,

Prop. 2]. In each case, however, these connections require the algorithm to assume

that the data assimilated into the model should be error-free. �is is an unrealistic

assumption, since the input to f is inexact at all but the �rst iteration, and as such the

output cannot be expected to represent the value of the derivative x′(t) exactly.
�e primary bene�t of the �ltering construction is that, with careful programming, it

can be competitive in terms of speed with standard algorithms. �is is due to the fact

that at each iteration, a single function evaluation is made, and all remaining compu-

tation is made up of straightforward linear operations. �is minimal cost overhead

is stressed by the authors of these papers—this is a settlement to the cost/accuracy

trade-o� in favour of the former, a point that they explicitly recognise. Finally, we

note that several rigorous convergence statements for integrators constructed using

the �ltering approach are presented in a very recent paper by Kersting et al. [Ker18].
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2.1.1 Discussion

�e common theme in all of the approaches discussed so far is the functional nature

of the random variable x(t) upon which inference is to be drawn. In other words,

while the algorithms are structurally di�erent in the speci�c ways they incorporate

numerical data from the ODE, the input and output in all cases is a measure over

some space X of functions, of which x(t) is assumed to be an element. �is feature

is formalised in Schober et al. [Sch18], in which the authors state an express desire to

avoid “an analysis gap between statistical and numerical computations.”

While this view is consistent and attractive, a number of practical issues arise, with

no consensus on their resolution. Firstly, how does one approach the thorny issue of

prior choice ρ0 for the ODE solution?

�e usual Bayesian answer to this question falls into one of three categories. �e �rst

is to suggest that the prior should attempt to formally encode meaningful knowledge

about the variable of interest—in the case of an ODE solution function x, this could

relate to its high-level features, such as its smoothness or whether or not it is expected

to be periodic.21

Alternatively high-level heuristic arguments may be used to motivate prior choice—

examples of this approach include uninformative or maximum-entropy priors [Jay03,

§12]. Finally the choice can be made for mathematical convenience—the canonical

example in elementary Bayesian analysis being conjugate priors. It is not clear how

either of these would be applied to the complex models being considered here.

�ose PN methods presented in Section 2.1 which aim to match the posterior mean

E(x∣θ , ϕ) to the output of a particular classical method [Sch14; Sch18] choose priors

speci�cally to achieve this . �e earlier methods [Hen14; Chk16] barely consider the

interpretation of their prior choice at all, and consequently say little about its eventual

e�ect on the posterior distribution over solutions.

Neither approach seems satisfactory if the prior choice is primarily intended to re�ect

meaningful information about the variable at hand. However, it is arguably evenmore

di�cult to encode such informative prior assumptions in distributional form than in

a typical (experimental) Bayesian analysis, due to the absence of convincing intuitive

reasoning for how to model the epistemic uncertainty in a numerical procedure.

Schober et al. [Sch18] have recently tackled this issue head on, by explicitly reinterpret-

ing the posterior measure merely as an “external analysis of the e�ects of the [prior]

assumptions”. �ey speci�cally claim that the aim of their method is to act as an ‘infer-

21Hennig et al. [Hen15, §2(c)] argue that in the numerical setting, this sort of higher-level informa-
tion should in principle be available to the numerical algorithm, at runtime. Whether and how this
could be implemented in a practical manner is unclear and not explored.
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ence agent’, a view which formally absolves the practitioner from having to consider

what information is encoded in the prior measure. Notably, the prior chosen for the

method in that paper—multiply-integrated Brownian motion—implies that the solu-

tion x, if considered as a draw from the posterior measure ρN , has properties such as

di�erentiability class at oddswith the true solution of theODE xθ . �e ‘inference agent’

interpretation allows them to circumvent this inconsistency, since under this view the

solution is not required to be considered as a sample from the posterior measure.22

A second problematic issue is calibration. Wewill discuss this inmuch greater depth in

Section 4.3 but in short, what wemean is the process of setting the tuning parameters ϕ

of the algorithms used to derive the posteriormeasureswithin each framework. A com-

plete Bayesian analysis would require that each such hyperparameter be included as a

full part of the inference procedure. �is is both computationally challenging—some

of the reasons were considered in Section 1.4.1—and furthermore throws up the non-

trivial question of how to choose hyperpriors. As a result, a variety of non-Bayesian

approaches to calibration are suggested in the articles summarised in this section,

including hyperprior optimisation—otherwise known as empirical Bayes [Rob56]—

which in some cases involves the use of a data-dependent marginal distribution.

It is important to clarify that these considerations do not in themselves invalidate any

of the methods explored in this section. However, they do call into question the merit

of obstinately insisting on a purist Bayesian approach. To be clear, what we mean here

is not that Bayesian reasoning itself is at fault, but that non-Bayesian approaches can

be justi�ed for practical purposes if strict Bayesian approaches result in the sorts of

intractable di�culties just described. With this in mind, we turn to a fundamentally

di�erent paradigm for constructing uncertainty estimates over solutions of IVPs.

2.2 randomised numerical methods

Conrad et al . (2016)

�e article by Conrad et al. [Con16] proposes an entirely di�erent construction—one

which modi�es existing non-probabilistic ODE solvers to create probabilistic ones,

by introducing stochastic perturbations ξi at each iteration. �e scale of perturbation

that ensures the method remains convergent is rigorously stated and proved.23 As

such, this framework addresses the issue of the theoretical performance of probabilis-

tic integrators in relation to their non-probabilistic counterparts for the �rst time.

22Some further discussion on the subtleties of interpretation of the prior and posterior distributions
in probabilistic numerical methods is presented by Cockayne et al. [Coc17, Appendix A].

23�e convergence we refer to is in the h → 0 sense of numerical analysis—a formal de�nition is
given as De�nition 3.1 in Chapter 3.
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�ough structurally di�erent to the methods in Section 2.1, the fundamental aim—to

return a probability measure over the solution of a numerical procedure in a way that

represents computational uncertainty—remains the same.

�e construction proceeds as follows. Treating the problem in a discrete setting,

the algorithm produces a sequence Z ≡ Z0∶N of values approximating X ≡ X0∶N ≡

x(t0∶N), with Fi+1 ≡ f (Zi+1, θ) constituting the observations and Zi+1 determined

by an iterative relation depending on previous estimates Zi and Fi . �is procedure

closely resembles a standard iterative IVP-solving algorithm—the main di�erence

being that the iterative relation generating the sequence Z is non-deterministic. (To

stress this point we will sometimes write Z(ξ) to re�ect the dependence of Z on the

set of random perturbations ξ.)

Note that, in contrast to the approaches in Section 2.1, there is no attempt here to

continuously assimilate the generated values into a functional model for the unknown

continuous solution x or ẋ during the run of the algorithm. Instead, the justi�cation

for the method comes post hoc in the form of a convergence theorem bounding

the worst-case expected squared-error maxi Eξ∣∣Zi(ξ) − Xi ∣∣2. �e precise statement

of this result requires some further de�nitions and technical background, and we

therefore defer it to Section 3.2.

�is approach is intuitive, allowing for modi�ed versions of standard algorithms

which inherit known useful properties, and giving provable probabilistic error bounds

for the output. It is e�ectively a form of randomised numerical method, where the

introduced stochasticity at each step aims to re�ect the error of the underlyingmethod.

�e resulting posterior distribution is non-parametric, and it relies on Monte Carlo

sampling to give empirical approximations to it. It is only de�ned on the grid t0∶N ,

though in some limited contexts it is possible to extend the formulation to the entire

(continuous) range [t0, tN], thus giving a posterior output more qualitatively similar

to those given by the methods in Section 2.1 [Con16,�m. 2.2]. We will expand on

these observations in Chapter 3.

A key di�erence in philosophy is that, from a statistical viewpoint, the method ex-

plicitly de�nes a distribution over numerical solutions Z rather than an uncertainty

centred around the true solution x (or X). �e relationship of the measure over Z to

the true solution X is then guaranteed by the convergence analysis. �e interpretation

of Z as a sample from a discrete measure representing the uncertainty in X is then

thought of as an explicit modelling choice. Our contention is that this is a setup

qualitatively much more similar to classical IVP integrators, and one better suited

to analysing the error in the numerical procedure itself—subject of course to the

implementation of an e�ective calibration process.
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Figure 2.1: Bayesian network representation of an indicative section of the joint
distribution p(Z1∶N , F0∶N−1∣θ , ϕ) as decomposed in Equation (2.10).

To see the structure of the model, consider the distribution representing numerical

uncertainty p(x∣θ , ϕ), from equation (1.13). In accordance with the discussion in this

section, we are now considering the alternative distribution p(Z∣θ , ϕ). We decompose

this joint distribution to make explicit the sequential nature of its calculation.

p(Z1∶N ∣θ , ϕ) = ∫ p(Z1∶N , F0∶N−1∣θ , ϕ)dF0∶N−1 (2.9)

= ∫ [N−1∏
i=0

p(Fi ∣Zi , θ)p(Zi+1∣Zi , Fi , ϕ)] dF0∶N−1 (2.10)

�e term p(Fi ∣Zi , θ) simply describes the deterministic transformation of applying the

function f (⋅, θ)—this could be written in distributional form as δFi( f (Zi , θ)). �e

term p(Zi+1∣Zi , Fi , ϕ) is given as a Gaussian centred around the output of any classical
single-step IVP solver, with its variance controlling the scale of the perturbations—this

variance is constrained in accordance with the main convergence result of Conrad et

al. [Con16,�m. 2.2], which we give in Section 3.2 as�eorem 2. We will sometimes

refer to p(Zi+1∣Zi , Fi , ϕ) and its later generalisations as the ‘stepping’ or ‘step-forward’

distribution.

�e Bayesian network representation [Pea85] given in Figure 2.1 highlights the depen-

dence structure of the joint distribution p(Z1∶N , F0∶N−1∣θ , ϕ) visually. When we come

to generalising and modifying the statistical model for the sequence Z1∶N in later chap-

ters, this representation will be a useful way of contrasting the di�erent approaches.

Note that, using the terminology of Hennig et al., [Hen15, §3a], the two constituent

components of the decomposition in the right-hand side of (2.10) respectively corre-

spond to the ‘decision rule’—how the algorithm generates a new data-point Fi ; and

the ‘generative model’—which encodes the likelihood model for Z.

A further key conceptual point is that there is genuine stochastic randomness in the

method, as in Chkrebtii et al. [Chk16] but unlike the other integrators described in

Section 2.1. �is means that in order to actually evaluate the distribution over numeri-

cal solutions given in equation (2.9), multiple runs are required with di�erent random

seeds ω ∈ Ω, and a Monte Carlo estimator must then be employed to marginalise out
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this stochasticity. We can express this (in a non-rigorous way) by extending equation

(2.10) to

p(Z1∶N ∣θ , ϕ) = ∫∫ [N−1∏
i=0

p(Fi ∣Zi , θ)p(Zi+1∣Zi , Fi , ϕ, ξ)] dF0∶N−1 dPξ (2.11)

A typical run involves sampling an element ω[k] of the sample space Ω, using this to

generate a realised set of Gaussian perturbation ξ1(ω[k]), . . . , ξn(ω[k]), then evaluat-

ing the decomposition in (2.11) to give a sample Z[k] from p(Z∣θ , ϕ, ξ). �is process

is then repeated with multiple di�erent seeds ω[k], and the introduced randomness

subsequently marginalised out, resulting in ensemble of samples from which Monte

Carlo estimates for statistics of p(Z∣θ , ϕ) can be derived.24

An experimental analysis of this method is also undertaken in by Conrad et al. One

crucial consideration is how to calibrate the scale of the perturbations which, as the

authors themselves state, completely controls the apparent uncertainty indicated by

the method. �is issue arises due to the presence of an unspeci�ed constant α in the

permitted variance implied by �eorem 2. In the paper, an approach is suggested

which seeks to replicate the expected scale of the global error in the underlying

classical method. In our own extension to this method, to be introduced in Chapter 3,

we adopt a similar approach—we therefore defer the full details of their calibration

scheme to Section 4.3.

2.3 other recent developments

Before continuing to a complete exposition of our own contributions, we brie�y note

here several other pieces of work related to the probabilistic solution of ODEs, some

of which are very recent.

Firstly, in relation to the theoretical underpinnings of the functional approach to infer-

ring the ODE solution x, an even stricter framework to that proposed by Schober et

al. [Sch18] is developed by Cockayne et al. [Coc17, §2.3]. �is paper de�nes so-called

‘Bayesian probabilistic numerical methods’ to be those in which the prior-likelihood-

posterior structure of the inner inversion central to the methods outlined in Section

2.1 can be interpreted in a rigorous measure-theoretic sense as a Bayesian procedure.

24In fact, there is no methodological problem with the random perturbations ξ depending on the
parameter θ and, in the method we introduce in Chapter 4, we require this generalisation. In this case,
equation (2.11) can be further generalised to

p(Z1∶N ∣θ , ϕ) = ∫∫ [
N−1∏
i=0

p(Fi ∣Z i , θ)p(Z i+1∣Z i , Fi , ϕ, ξ, θ)] dF0∶N−1 dPξ∣θ (2.12)
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Speci�cally, they object to the likelihood formulations in those articles—since the

nature of the ‘data’ F is numerical, they contend that the information it provides should

be considered noise-free—unlike the usual case of noise-corrupted experimental data.

�ey argue that this causes Bayes’�eorem to be ill-de�ned and suggest an alternative

construction to circumvent this issue. While they provide examples for other classes

of numerical problems, none of the ODEmethods described in this thesis satisfy their

strict de�nition.

Very recent work by Wang et al. [Wan18] substantiates the claim that such methods

do not yet exist, though they provide an interesting proof-of-concept Bayesian prob-

abilistic ODE solver which may be applicable for the sub-class of ODEs to which a

solvable Lie algebra of transformations can be associated [Blu02, §2-3]. For further

details, the reader is directed to the aforementioned papers.

Within the �ltering paradigm, rigorous convergence statements of the type given in

Conrad et al. [Con16]—and also later in this thesis—were not previously available.

�e �rst results of this kind have recently been published by Kersting et al. [Ker18].

Evenmore recently, Tronarp et al. [Tro18] have begun to develop a general framework

in which the �ltering-based methods described here manifest as special cases.

Finally, an idea with parallels to the paradigm of randomised numerical methods—

which we will cover in detail starting in Chapter 3—is introduced in recent paper

of Abdulle & Garegnani [Abd18]. �e core idea here is to randomise the time step

h of an iterative algorithm, rather than the output estimate, and in doing so with

repetition generate output measures analogous to our p(x∣θ , ϕ). Implemented in a

particular way, this concept additionally enables interesting higher-level features of

the underlying dynamical system to be preserved, such as symplecticity.
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3
RANDOMISED METHODS FOR THE

PROBABILISTIC SOLUTION OF ODES

�e framework suggested byConrad et al. [Con16] and introduced in Section 2.2 is the

�rst that attempts to construct probabilistic ODE solvers from classical, deterministic

ones. In simple terms, the approach centres around the introduction of stepwise

stochasticity to iterative integrators. �ese random perturbations are intended to

cumulatively re�ect the uncertainty arising in the underlying method, but evidently

their scale and the way in which they are introduced must be constrained in a way

that does not materially alter the necessary analytical properties of the algorithm.

In this chapter we discuss these methods in greater detail, including several novel con-

tributions. Before doing so, we provide a concise introductory survey of the families of

classical initial value problem solvers we will consider, giving important de�nitions as

we go. Furthermore, we will summarise some of the key technical properties of these

methods—such as convergence—as they are thought of in conventional numerical

analysis. �is will allow us to analyse the modi�ed, probabilistic versions that will

be discussed later using the correct language, and compare them to long-accepted

theoretical benchmarks.

3.1 classical numerical methods for ivps

In this thesis, we restrict attention to iterative algorithms based on the ‘di�erence

method’ [Gea71, §1] i.e. those where the solution is approximated at a sequence of

discrete mesh points, with estimates calculated sequentially on the mesh. (We brie�y
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mentioned the othermain class of methods, based on orthogonal function expansions,

in Section 1.4.) In fact, we restrict ourselves further to the class of constant step-size,

non-adaptive algorithms—those where the scheme to be used is �xed in advance and

remains unchanged throughout the run.

Methods with step-size control based on solution tolerances, or which adapt in other

ways during the course of the solve, are ubiquitous inmodern computational packages

for ODEs, but a comprehensive survey of such solvers is beyond our scope. A large

body of literature exists on this rich subject [Ise09; Stu98; Hai08; But08; Jac09; Gea71;

Atk09; Pal09; Sül03]. We begin our survey with the following central concept:

Definition 3.1 (Convergence) Recall that Xi ≡ x(ti) ∈ Rd is the exact

solution of the di�erential equation (1.9) at time ti , and Zi is a numerical approximation

to Xi generated by some time-stepping numerical method. Such a method is convergent

if for every tend > 0 and Lipschitz function f (⋅, θ) ∶ Rd → Rd , it holds that

lim
h→0

max
i
∥Zi − Xi∥ = 0 (3.1)

where i runs through all discrete time-steps in the range 0, 1, . . . ,N with N ≡ ⌊h−1tend⌋,
and ∣∣ ⋅ ∣∣ is the standard Euclidean norm. Furthermore, the method is convergent of

order p if there exists an integer p ≥ 1 and constant C > 0 (independent of h but

possibly dependent on tend) such that

max
i
∥Zi − Xi∥ ≤ Chp (3.2)

d Remark 3.1 As noted by Iserles [Ise09, §1.2], convergence is an obligatory mini-

mum requirement for a time-stepping numerical scheme. �is thought arises from

the reasonable assumption that more computation should result in increasing prox-

imity to the correct solution—a non-convergent method violates this principle. �us,

while such further properties as stability, rate of convergence, consistency etc. may be

balanced against one another to compare the merits of di�erent schemes, if a method

is not at the very least convergent, it is de facto useless. As a result, when we introduce

probabilistic integrators that are based on classical methods later in this work, we

provide proofs of (stochastic) convergence analogous to these de�nitions. d

d Remark 3.2 Stuart & Humphries [Stu98, §3.1] write that the types of questions

that are typically asked of numerical methods for di�erential equations can be divided

into (i) those examining the relationship between the largeN behaviour of the discrete

scheme and the large t behaviour of the IVP itself, in the limit h → 0, and (ii) those

asking which qualitative dynamic features of the IVP are replicated by the numerical

scheme for a wide range of values of h. �e �rst of these concerns convergence

statements and the like, which our analysis focuses on. �e second concerns issues
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of stability. While we consider implicit methods later and remark on their apparent

improved stability, we do not aim to give a rigorous treatment of the stability properties

of the probabilistic methods we introduce. Our instinct is that this calls for the heavy

machinery of stochastic analysis and we hope future research will be able to shed

light on this subtle topic. We will revisit this discussion brie�y in Section 6.2.3. d

3.1.1 One-step methods

�e simplest IVP integrators combine the numerical estimate of the current point Zi

and an appropriate local approximation of the function f , to give an estimate for the

next point Zi+1. �e forward Euler scheme is the most well known. �is is given by

Zi+1 = Zi + hFi (3.3)

Here, Fi ≡ f (Zi , θ) is calculated by passing the estimate of the current point Zi to

the function f (⋅, θ). Two issues are immediately apparent. �e �rst is that, even if the

current point is known exactly, the estimate for Zi+1 will not in general be exact unless

f (⋅, θ) is constant over the entire time interval [ti , ti+1]. �is means that an error is

introduced with every application of this formula, termed local truncation error.

�e second issue is that since Zi /= Xi ≡ x(ti) on all steps a�er the �rst—and hence

is not exact—it is also the case that Fi /= f (x(ti), θ). In other words, the estimate for

the value of f (⋅, θ) at time ti is based on its evaluation at an input value known to

be inexact. In this way, earlier numerical inaccuracies propagate to all subsequent

iterations. It is from this fact that the concept of accumulated or global error arises.

In order to give more precise de�nitions of these quantities, and understand how

the errors produced by a numerical method relate to its convergence properties, we

introduce the following de�nitions:

Definition 3.2 (Flow maps) For an initial value problem dx/dt = f (x(t), θ);
xθ(0) = X0, and given t > 0, the �ow map Φt ∶ Rd → Rd is the function mapping the

initial value to the solution at time t, i.e. Φt(X0) = xθ(t).
For an iterative numerical method, the numerical �ow map Ψh ∶ Rd → Rd is the

function mapping the input at the current iteration to the output at the next, so that

Zi+1 = Ψh(Zi). For example, the numerical �ow map of the forward Euler method

(3.3) with step-size h is de�ned by Ψh(Zi) = Zi + h f (Zi , θ).
Definition 3.3 (Errors) �e local truncation error ei of an iterative integrator

advancing one step of length h from Zi can be written in terms of the �ow map and

numerical �ow map as

ei(h) = Ψh(Zi) −Φh(Zi) (3.4)
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and the global or accumulated error Ei at time ti ≡ ih as

Ei(h) = (Ψh ○ i⋯ ○Ψh)(X0) −Φih(X0) (3.5)

where Ψh ○ i⋯○Ψh denotes the i-times repeated composition of the map Ψh. Particularly

during convergence arguments, the norms ∣∣ei ∣∣ and ∣∣Ei ∣∣ of these quantities will be of
primary interest.

Definition 3.4 (Order) An iterative numerical method is of order p if for every

analytic f (⋅, θ) and �xed Zi , the local truncation error ∣∣ei ∣∣ is O(hp+1).
�e forward Euler scheme is of order one. �is can be straightforwardly determined

by rewriting its de�ning relation (3.3) as Zi+1 − [Zi + h f (Zi , θ)] = 0, substituting

the true solution values x(ti) for Zi and x(ti+1) for Zi+1, then performing a Taylor

expansion around ti . �is gives

x(ti+1) − [x(ti) + h f (x(ti), θ)]
= [x(ti) + hẋ(ti) +O(h2)] − [x(ti) + hẋ(ti)]
= O(h2) (3.6)

�e relationship between local and global errors is addressed by the following result.

Proposition 3.1 Let f (⋅, θ) be a Lipschitz-continuous function with Lipschitz

constant L f and assume that the numerical method with numerical �ow map Ψh has

local truncation error ∣∣ei ∣∣ = O(hp+1) for all 1 ≤ i < N . �en, given any such i, the

global truncation error ∣∣Ei ∣∣ = O(hp).
Proof. We give as an example the proof for the forward Euler method, though the

generalisations to other one-stepmethods, aswell as tomultistepmethods, are straight-

forward. Details are available in e.g. Quarteroni et al. [Qua00, §11.6.3]. �e approach

is an inductive bounding argument on the sequence ei of local errors. We write

∣∣Ei ∣∣ ≡ ∣∣Zi − Xi ∣∣ = ∣∣Zi−1 + h f (Zi−1, θ) − Xi ∣∣
= ∣∣Zi−1 − Xi−1 + Xi−1 + h f (Xi+1, θ) − Xi + h f (Zi−1, θ) − h f (Xi−1, θ)∣∣
≤ ∣∣Zi−1 − Xi−1∣∣ + ∣∣Xi−1 + h f (Xi+1, θ) − Xi ∣∣ + ∣∣h f (Zi−1, θ) − h f (Xi−1, θ)∣∣
≤ ∣∣Ei−1∣∣ + ∣∣ei−1∣∣ + hL f ∣∣Ei−1∣∣
= ∣∣ei−1∣∣ + (1 + hL f )∣∣Ei−1∣∣
= ∣∣ei−1∣∣ + ∣∣ei−2∣∣(1 + hL f ) + ∣∣ei−3∣∣(1 + hL f )2 +⋯+ ∣∣e1∣∣(1 + hL f )i−2
≤ Chp+1 (1 − (1 + hL f )i−1) (1 − (1 + hL f ))−1
= CL−1f h

p((1 + hL f )i−1 − 1)
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where in the penultimate line we have used the fact that ∣∣ei−1∣∣ ≤ Chp+1. Now noting

that ti = ih, we have

∣∣Ei ∣∣ ≤ CL−1f h
p ((1 + ti−1L f

i − 1 )
i−1 − 1) ≤ CL−1f exp(ti−1L f )hp

≤ C′hp

We can now �nally state the result connecting the scale of a method’s local errors to

its convergence. Consistency and zero-stability are technical conditions which are

true for all integrators considered in this thesis—precise de�nitions can be found in

Quarteroni et al. [Qua00, §11.3]

Proposition 3.2 An consistent and zero-stable iterative numerical method of order

p, applied to a Lipschitz function f (⋅, θ) over a �xed, compact time interval [0, tend]
and with given �xed initial condition X0, is convergent of order p.

Proof. �is statement immediately follows from the De�nitions 3.1 and 3.4, and

Proposition 3.1.

It is now clear that the forward Euler method, whose local truncation error isO(h2),
has global error which isO(h).
Another important distinguishing feature of iterative numerical methods concerns

the manner in which Ψh depends on state estimates Z. �e forward Euler scheme,

which only requires the current value Zi as input, is called explicit. An example of an

implicit single step method is the backward Euler method, given by

Zi+1 = Zi + hFi+1 (3.7)

Rewriting (3.7) in terms of �ow maps as Ψh(Zi) = Zi + h f (Ψh(Zi), θ), we see that
in this case the iteration cannot be applied directly since the numerical �ow map is

de�ned implicitly. �us a second, nested numerical scheme—typically a �xed-point

iteration or a Newton–Raphson scheme [But08, §225]—is required to output Zi+1.

Finally, we note that higher-order one-step methods also exist—the trapezoidal rule,

another implicit method, is de�ned by Ψh(Zi) = Zi + 1
2h( f (Zi) + Ψh(Zi)). �is

method advances in a single step but has local errorO(h3) and global errorO(h2).
3.1.2 Runge–Kutta methods

A further one-step method with its own name is the mid-point rule given by25

Zi+1 = Zi + h f (Zi + 1
2h f (Zi , ti , θ), ti + 1

2h, θ) (3.8)

Unpicking equation (3.8) shows that the calculation contains an intermediate stage,

whose role is to improve the estimated value of the function f to be used in the �nal
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evaluation. �e mid-point rule has local error O(h3), and is the simplest example

of a more general class of multi-stage methods where intermediate calculation is

undertaken to improve the �nal estimate. Another name for this class is Runge–

Kutta methods, the most well-known being RK4, with four intermediate stages given

sequentially by
χ1 = f (Zi , ti , θ)
χ2 = f (Zi + 1

2hχ1, ti + 1
2h, θ)

χ3 = f (Zi + 1
2hχ2, ti + 1

2h, θ)
χ4 = f (Zi + hχ3, ti + h, θ)

Zi+1 = Zi + 1
6h(χ1 + 2χ2 + 2χ3 + χ4)

(3.9)

With these intermediate—and iterative—re�nements of the estimate of f , a method

with local errorO(h5) arises. Runge–Kutta methods of even higher order exist but

require disproportionately more stages to achieve these orders of convergence—for

an explicit RK method of order p, the number of stages required is strictly greater

than p for all p ≥ 5 [But08, §236]. Implicit multi-stage methods can also be de�ned,

though they can be very expensive to implement if each intermediate stage requires an

internal iteration to determine the value it passes forward to the next [Sül03, §12.12].

An extensive survey of Runge–Kutta methods, including some interesting historical

background, is given by Butcher &Wanner [But96].

3.1.3 Multistep methods

�e core principle of multistep methods is that already calculated estimates Z≤i and

F≤i from earlier time points can be used to improve the estimate at the next time-point

ti+1. By contrast, the one-step methods explored in Sections 3.1.1 and 3.1.2 discard all

information before the present time-point ti . If the multistep iteration uses a linear

combination of past values, the method is termed a linear multistep method (LMM).

In their most general form, an s-step linear multistepmethod is de�ned by an iterative

relation of the form
s−1∑
j=−1

a jZi− j = h
s−1∑
j=−1

b j f (Zi− j, θ) (3.10)

It is clear from this formulation that if b−1 = 0, then Zi+1 is obtained only from past

state estimates Zi−s+1∶i and derivative estimates Fi−s+1∶i and is thus explicit. If b−1 /= 0

then the method is implicit. In general, the determination of appropriate coe�cients

25For this section, we have temporarily reverted to the more general three-argument version of
the function f de�ning the ODE, i.e. f (x(t), t, θ). �is is because Runge–Kutta methods involve
calculating estimates of f at fractional time-points, though if we restrict attention to autonomous
systems dx/dt = f (x , θ), this is only manifested through the changing �rst argument.
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a j and b j is of critical importance, and desirable properties such as stability,26 consis-

tency and convergence all �ow from these choices [Sül03, §12]. Particular choices of

a j and b j give rise to well-studied methods such as backward di�erentiation formulae,

Taylor series methods, Nyströmmethods, and Nordsieck methods [Hai08, §III.1].

Our study focuses on a particularly important and well-used subclass of LMMs for

which a−1 = 1, a0 = −1, and a j = 0 for all other j. �is category of LMMs is known

as the Adams family of integrators. �ese methods were introduced in 1883 by Adams

[Ada83] and popularised by the 1926 book of Moulton [Mou26]. �e construction is

based on extrapolating from a polynomial interpolation of past function estimates.

Since these methods form a core part of our contribution in this thesis, we explore

them in detail.

Adams–Bashforth method

�e s-stepAdams–Bashforth (AB)method—the commonname for the class of explicit

Adams family algorithms—calculates Zi+1 by constructing the unique order s − 1
polynomial Pi(u) ∈ Ps−1 interpolating the previously-calculated function evaluations

Fi , Fi−1, . . . , Fi−s+1. �is polynomial is given by Lagrange’s method [Abr65, §25.2] as

Pi(u) =

s−1∑
j=0

L0∶s−1
j (u)Fi− j L0∶s−1

j (u) =

s−1∏
k=0
k /= j

u − ti−k
ti− j − ti−k (3.11)

�e L0∶s−1
j (u) are known as Lagrange polynomials of order s and have the property

that L0∶s−1
p (ti−q) = δpq. �ey form a basis for the space of polynomials Ps−1 known

as the Lagrange basis. Having constructed the interpolating polynomial (3.11), the

Adams–Bashforth iteration then proceeds by writing the integral version of the initial

value problem (1.9) as

x(ti+1) − x(ti) ≡ ∫ t i+1

t i
f (x(t), θ)dt (3.12)

�is exact terms in this expression are then replaced by their numerical approxima-

tions, and �nally the function under the integral is approximated by extrapolating

the polynomial Pi(u) to time ti+1. �is gives

Zi+1 − Zi ≈ ∫
t i+1

t i
Pi(u)du = h

s−1∑
j=0

βAB
j,s Fi− j (3.13)

26�ere are several di�erent (but related) concepts of stability for multistep methods: zero-stability,
absolute stability, relative stability, A-stability and confusingly, just ‘stability’. While we refer to some of
these in isolation during our later analysis, we refrain from giving extended de�nitions here. �e book
by Hackbusch [Hac14] speci�cally concerns the analysis of stability for numerical methods, while
Palais & Palais give a (partial) hierarchy of implication of these di�erent notions in the case of multistep
ODE solvers [Pal09, Appendix 1]. �ough stability is not the primary focus of our study, we return to
some of the open questions relating to the stability of our methods in Section 6.2.3.
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�ecoe�cients βAB
j,s are positive real numbers called the Adams–Bashforth coe�cients

of order s and are given by

βAB
j,s =

1

h ∫
t i+1

t i
L0∶s−1
j (u)du =

1

h ∫
h

0
L0∶s−1
j (ti + u)du (3.14)

�ese coe�cients are independent of h and satisfy ∑s−1
j=0 β

AB
j,s = 1. �eir values for

1 ≤ s ≤ 5 are listed in table 3.1. Note that the 1-step Adams–Bashforth method is the

same algorithm as the forward Euler method.

It can be shown—by methods similar to those described in Section 3.1.1 for one-step

methods—that the local truncation error of the s-step Adams–Bashforth method is

O(hs+1) and the global error O(hs).
Adams–Moulton method

Adams–Moulton (AM)methods are the name given to the class of implicit Adams fam-

ily integrators. �ey are constructed using similar principles to the Adams–Bashforth

methods, except that this time the order s polynomial Qi(u) ∈ Ps interpolates the

s + 1 points Fi+1, Fi , Fi−1, . . . , Fi−s+1. �e resulting integral extrapolation equation is

thus an implicit one, with the unknown Zi+1 appearing on both sides. Carrying out

the equivalent calculations as in equations (3.11)–(3.13) gives another set of coe�-

cients βAM
j,s —the Adams–Moulton coe�cients—the values of which are also listed in

table 3.1.

As with implicit one-step methods, the implicit nature of the multistep Adams–

Moulton method means that the value of Zi+1 implied by the equivalent relation

to (3.13) can only be calculated approximately. As a consequence, Adams–Moulton

methods are used in conjunction with an explicit Adams–Bashforth method of one

order lower, in a ‘predictor-corrector’ arrangement. In this situation, a predictor

value Z∗i+1 is calculated using an Adams–Bashforth step, this is then used to esti-

mate F∗i+1 = f (Z∗i+1, θ), and �nally an Adams–Moulton step uses this value as its

approximation to Fi+1, thereby calculating Zi+1.

Note that in all of the schemes described in this section, the �rst s − 1 steps must be

made using a di�erent method, since evidently there is not yet enough history to

deploy an s-step method during this initialisation phase. It is intuitively clear—and

straightforward to prove—that the method used for this initialisation must be of at

least equal order to the primary method in order for the global error to behave as

desired. Typically a high-order Runge–Kutta scheme is used for these starting values,

though Hairer et al. [Hai08, §III.7] remark that self-starting multistep codes which

simply start with the order one method implemented with very small initial step sizes

are also prevalent.
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Adams–Bashforth

No. of Global Coe�cient βAB
j,s of Fi− j for j = Error

steps s order 0 1 2 3 4 constant

1 1 1 1/2
2 2 3/2 –1/2 5/12
3 3 23/12 –4/3 5/12 3/8
4 4 55/24 –59/24 37/24 –3/8 251/720
5 5 1901/720 –1387/360 109/30 –637/360 251/720 95/2888

Adams–Moulton

No. of Global Coe�cient βAM
j,s of Fi− j for j = Error

steps s order –1 0 1 2 3 constant

0 1 1 –1/2
1 2 1/2 1/2 –1/12
2 3 5/12 2/3 –1/12 –1/24
3 4 3/8 19/24 –5/24 1/24 –19/720
4 5 251/720 323/360 –11/30 53/360 –19/720 –3/160

Table 3.1: Coe�cients and error constants of the Adams–Bashforth and Adams–
Moulton integrators of orders 1 to 5. Values formethods of higher order, and details
of the algorithm used to derive them, are given by Butcher [But08, §241-244].

d Remark 3.3 We highlight here an unfortunate convention which, while occa-

sionally confusing, is widespread in numerical analysis and which we have therefore

elected to follow. For multistep methods, the step number s is taken to be equal to the

total number of time ordinates at or before the current point ti at which derivative val-

ues are used during the iteration. �us the �rst-order Adams–Bashforth method (the

forward Euler method) is a ‘1-step’ method, whereas the �rst-order Adams–Moulton

method (the backward Euler method) is a ‘0-step’ method. Viewed another way, for

s ≥ 1, the s-step Adams–Bashforth and (s + 1)-step Adams–Moulton methods both

go equally far back. d

3.1.4 General linear methods

�e di�erence between the higher-order integrators in the Runge–Kutta family and

multistep methods is that in the former case, intermediate stages consisting of ad-

ditional evaluations of f (⋅, θ) contribute to the �nal estimate for Zi+1 but do not

themselves possess any theoretical guarantees on closeness to the exact solution,
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whereas in the latter case evaluations of f (⋅, θ) calculated in previous steps (which

do possess such guarantees) are reused.

�ese classes di�er in their regions of stability [Ise09; Sül03] and their robustness to

sti� or badly-behaved ODEs. �ey are also very di�erent in the scale of computation

they require—if stability is a problematic factor in a given problem, it may be that

more expensive codes are justi�ed. Su�ce it to say that both multistage and multistep

methods are important constituents of the numerical analyst’s toolbox.

A natural extension is to consider both approaches simultaneously. �is framework,

called General Linear Methods and introduced by Butcher [But06], allows for maxi-

mum generality and includes all methods above as special cases, including coupled

predictor/corrector types. A rich and elegant theory exists to describe these methods

in terms of matrices—called Butcher tableaux—and analysis of the algebraic proper-

ties of these matrices provides de�methods of proof for concepts such as convergence

and stability of the corresponding integrator. A more detailed description is beyond

the scope of this thesis—a comprehensive reference is the book by Jackiewicz [Jac09]—

but we note in passing our hope that some of the ideas we will consider later may

eventually be applicable in this more general setting too.

3.1.5 Error indicators

�e classical de�nition of numerical error for iterative numerical ODE solvers was

given inDe�nition 3.3. Proofs verifying the valid convergence of each scheme typically

compare Taylor series expansions of the true and approximate solutions and seek to

cancel as many low order terms as possible, in the manner described for the forward

Euler method in Section 3.1.1. �e �rst remaining non-zero term is, of course, the

leading-order term of the local truncation error. For example, the 3-step Adams–

Moulton method has local truncation error ei = − 19
720h

5x(5)(τi), where x(5)(τi) is
the ��h derivative of x(t) at some point τi in the interval [ti−3, ti+1]. �e coe�cient− 19

720 is called the error constant of the method and these are also listed in table 3.1.

�inking probabilistically, we can immediately identify issues with this formulation.

Clearly, the exact local truncation error is not known—if it were, we would just

subtract it o� and get a more accurate solution. However it is even di�cult to generate

less precise information about this quantity, such as lower or upper bounds, since

we can not typically say anything meaningful about the boundedness of the ��h

derivative of x, nor of the exact value of τ. Furthermore, everything here is based on

asymptotic theory—with only the �rst residual Taylor series term considered—and is

therefore unreliable for large h [Gea81, §3.2].

56



Taking an even broader view, it is di�cult to know how to interpret an error—an

inherently unknowable quantity—represented by a single number in this way. �is is

particularly true for a statistician, who is typically used to a richer characterisation of

error. As we argued in Chapter 1, a Bayesian would expect that an unknown quantity

such as this should be assigned a probability distribution, and then some model pro-

posed to infer it. �is thoughtmotivates the development of all probabilistic numerical

methods—both those we have already seen, and those we are about to propose.

3.2 probabilistic one-step methods

Having surveyed the main classical families of iterative IVP solvers, we now take up

where we le� o� in Section 2.2, describing in greater detail the randomised integrator

concept of Conrad et al. [Con16]. In subsequent sections, we give a detailed account

of our own contributions generalising this paradigm. �e algorithm introduced in

that paper centres around the following convergence result. Before stating it, we give

the stochastic equivalent to De�nition 3.1 that it employs.

Definition 3.5 (Stochastic Convergence) Recall that Xi ≡ x(ti) ∈ Rd

is the exact solution of the di�erential equation (1.9) at time ti . Let Zi(ξ) be a random
variable representing an approximation to Xi generated by some stochastic time-stepping

numerical method with random seed ξ, in accordance with the discussion of Section 2.2.

Such a method is convergent in mean-square if for every tend > 0 and Lipschitz function

f (⋅, θ) ∶ Rd → Rd , it holds that

lim
h→0

max
i

Eξ∥Zi(ξ) − Xi∥2 = 0 (3.15)

where i runs through all discrete time-steps in the range 0, 1, . . . ,N with N ≡ ⌊h−1tend⌋,
and ∣∣ ⋅ ∣∣ is the standard Euclidean norm. Furthermore, the method is convergent in

mean-square to order p if there exists an integer p ≥ 1 and constant C > 0 (independent

of h but possibly dependent on tend) such that

max
i

Eξ∥Zi(ξ) − Xi∥2 ≤ Ch2p (3.16)

d Remark 3.4 It immediately follows from Jensen’s inequality that a scheme

which converges in mean-square to order p also converges in mean to order p, i.e.

maxi Eξ ∥Zi(ξ) − Xi∥ ≤ Chp, for a possibly di�erent C. In this form this statement is

a clear analogue of the deterministic convergence statement (3.2). d
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Theorem 2 (Conrad et al . , 2016) Consider the one-step (non-probabilistic)

IVP solver with numerical �ow map Ψh. Assume this numerical scheme has global

order of convergence p. Let ξi ∼ N(0, αhr ⋅ Id), i.i.d. for each 0 ≤ i ≤ N ≡ ⌊tend/h⌋
and α > 0.

�en the randomised method de�ned by Zi+1 = Ψh(Zi) + ξi has mean-square order of

convergence p if and only if r ≥ 2p+1. Speci�cally, for some constant C > 0 independent

of h but possibly depending on tend, it holds that

max
i

Eξ ∥Zi(ξ) − Xi∥2 ≤ Ch2p (3.17)

d Remark 3.5 As alluded to in Remark 3.4, convergence in mean-square is not the

only type of stochastic convergence possible. Other types of convergence, which form

a partial hierarchy of implication, including convergence in probability, convergence

in distribution, and almost-sure convergence. Precise de�nitions and basic results

connecting them are given in e.g. Grimmett & Stirzaker [Gri01, §7.2].

In the present context, we note that a result analogous to �eorem 2 but establish-

ing a stronger type of convergence (still mean-square but with the time supremum

inside the expectation—so that limh→0Eξ [maxi ∥Zi(ξ) − Xi∥2] = 0) is given by Lie

et al. [Lie17]. However, in the remainder of this thesis, we work with the mode of

convergence given in De�nition 3.5 and used in�eorem 2. d

�eorem 2 gives the conditions on the stepwise perturbations under which ran-

domised one-step IVP integrators preserve the overall convergence rate of their

classical counterparts. We have stated it in a slightly di�erent form to that given in

the original paper [Con16].

�e operative point is the exponent of h in the variance of the Gaussian perturbations.

Any value greater than or equal to 2p + 1 leaves the global convergence properties of
the scheme unchanged, while any value less than this breaks the convergence entirely.

We will give our own reasoning for why this exponent should be chosen to be exactly

2p + 1 in Chapter 5.

We note that this method is not restricted to the forward Euler method, but applies

to all one-step methods even with multiple stages. Furthermore, an extension to

continuous time is possible in certain circumstances, though for �nite h the continued

solution is typically discontinuous. We refer to the original paper [Con16] for full

details. �e remaining obstacle to forming a practical algorithm from this theoretical

result is that of setting the scaling parameter α. We discuss this issue—which we term

calibration—in Section 4.3.
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3.3 probabilistic linear multistep methods

Conrad et al. [Con16] only consider probabilistic versions of one-step methods,

such as forward Euler or Runge–Kutta schemes. �is is due to the nature of the

convergence arguments in their proof of�eorem 2. A natural question that therefore

arises is whether these ideas could be extended to multistep methods where, as

outlined in Section 3.1.3, the estimate for the next point Zi+1 depends on more than

one previous function evaluation. �is question is considered in my paper [Tey16],

jointly authored with Konstantinos Zygalakis and Ben Calderhead and presented at

the �irtieth Conference on Neural Information Processing Systems in Barcelona, in

December 2016.

Before continuing, we brie�y recall here the overall structure of the statistical model

underlying the use of randomised numerical solvers. Assuming that some appropriate

calibration process has already been undertaken, the randomised algorithm proceeds

by drawing multiple ω[k] from the sample space Ω and uses these to form realised

sequences of perturbations ξi(ω[k]), which are then applied step-by-step to a classical

numerical solver.

�e output of each such run is a sample trajectory Z[k] drawn from p(Z∣θ , ϕ, ξ). With

the collected output of the entire procedure, we are then able to marginalise ξ by

Monte Carlo, giving a set of samples from p(Z∣θ , ϕ). We then take this ensemble to

represent the measure over numerical solutions p(X∣θ , ϕ), re�ecting the uncertainty
in X arising from the inexactness of the classical method.

In this section, we retain this structure but generalise the step-forward distribution

p(Zi+1∣Zi , Fi , ϕ). We rewrite equation (2.10) in such a way that this distribution now

depends on several previous function evaluations.27�is results in the decomposition

p(Z1∶N ∣θ , ϕ) = ∫ [ N−1∏
i=0

p(Fi ∣Zi , θ)p(Zi+1∣Zi , Fi , Fi−1, . . . , Fi−s+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s points

, ϕ)]dF0∶N−1 (3.18)

We propose a model for the term p(Zi+1∣Zi , Fi , Fi−1, . . . , Fi−s+1, ϕ) which aligns in

a particular sense with the s-step Adams–Bashforth method. �e end result is a

randomised multistep integrator, with a convergence result generalising�eorem 2.

However, we introduce the idea using an interesting novel construction starting from

Gaussian process theory [Ras06]. In this way we perform the double function of

both de�ning a randomised numerical method of the type described in Section 2.2

27Strictly speaking we have been somewhat loose in writing this product since this decomposition
does not take account of the initialisation procedure required for the �rst s − 1 steps. We assume for
now that these initial steps are calculated using some high-order classical method.
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Figure 3.1: Bayesian network representation of an indicative section of the joint
distribution p(Z1∶N , F0∶N−1∣θ , ϕ) as decomposed in Equation (3.18), with s = 2.

over the entire (discrete) range (t0, t1, . . . , tend), but also of constructing a Gaussian
process model for the step-forward distribution withmean equal to a commonly-used

classical method, in the manner of the probabilistic Runge–Kutta solver suggested by

[Sch14] and summarised in Section 2.1.

A Bayesian network representation of themodel decomposition proposed in Equation

(3.18)—taking s = 2 for the sake of clarity—is given in �gure 3.1.�is can be contrasted

to that previously given as �gure 2.1 in Section 2.2.

3.3.1 Gaussian process formulation of the step-forward distribution

�e construction proceeds by �xing a joint Gaussian process prior over the random

variables Zi+1, Zi , Fi , . . . , Fi−s+1.28 �is is done by �rst specifying a particular vector

of one-variable functions λ(t), in which L0∶s−1
j represents the ( j + 1)th Lagrange

polynomial of order s − 1, as de�ned in equation (3.11).

λ(t) = (0 L0∶s−1
0 (t) L0∶s−1

1 (t) . . . L0∶s−1
s−1 (t))T (3.19)

�is vector is then integrated to give another vector of functions Λ(t) as
Λ(t) = ∫

t

0
λ(u)du

= (1 ∫
t

0
L0∶s−1
0 (u)du . . . ∫

t

0
L0∶s−1
s−1 (u)du)T

(3.20)

�e elements of λ(t) (excluding the �rst) forma basis forPs−1, the space of polynomials

of order s − 1, and the elements of Λ(t) form a basis for the space Ps. �e initial 0 in

λ(t) is necessary to make the dimensions of the two vectors equal, so we can correctly

de�ne products such as Λ(t)Tλ(t) which will be required later. �e �rst element of

Λ(t) can be set to any non-zero constant c—the analysis later is una�ected—and we

therefore take c = 1.

28For this section, we drop the explicit dependence on θ and ϕ for notational clarity.
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We now consider a Gaussian process model of the following form:

z(t) ∼ GP(µ(t), k(t, t′))
µ(t) = 0 , k(t, t′) = Λ(t)TΛ(t′) (3.21)

�is formulation clearly recalls the Gaussian process de�nition of the probabilistic

methods of Section 2.1. However, we choose the notation z(t) rather than x(t) to
reinforce the point that we are de�ning a model for the numerical solution itself.

Recalling the statistical language of Section 2.1, we think of this as a prior distribution.

In the same manner as described there, we exploit the fact that Gaussian processes

are closed under di�erentiation [Ras06, §9.4], meaning we can immediately write

down the covariance kernel of the derivative as λ(t)Tλ(t′).
We will show that, conditional on past evaluations, the posterior process arising from

(3.21) is degenerate—i.e. has zero variance—and is equivalent to theAdams–Bashforth

polynomial interpolator. It follows that, considered at time ti+1, the posterior aligns

with the usual Adams–Bashforth estimate as given by equation (3.13).

Since we will solely be interested in values of the argument t corresponding to discrete

equally spaced time-steps ti− j− ti− j−1 ≡ h indexed relative to the current time-point ti ,

we will make our notation more concise by writing λi− j for λ(ti− j), and similarly Λi− j

for Λ(ti− j). �is is a justi�able simpli�cation since the Adams–Bashforth method—

and indeed any time-stepping method—is a mapping between discrete objects.

We therefore de�ne the discrete Gaussian joint distribution over Zi+1, Zi , Fi , . . . , Fi−s+1

in a manner consistent with the process de�ned by (3.21). �is results in the following

multivariate Gaussian Gram matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zi+1

Zi

Fi

Fi−1⋮
Fi−s+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΛT
i+1Λi+1 ΛT

i+1Λi ΛT
i+1λi ⋯ ΛT

i+1λi−s+1
ΛT

i Λi+1 ΛT
i Λi ΛT

i λi ⋯ ΛT
i λi−s+1

λTi Λi+1 λTi Λi λTi λi ⋯ λTi λi−s+1
λTi−1Λi+1 λTi−1Λi λTi−1λi ⋯ λTi−1λi−s+1⋮ ⋮ ⋮ ⋱ ⋮
λTi−s+1Λi+1 λTi−s+1Λi λTi−s+1λi ⋯ λTi−s+1λi−s+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.22)

Recalling the decomposition (3.18), we are interested in the conditional (‘posterior’)

distribution p(Zi+1∣Zi , Fi , . . . , Fi−s+1). �is can be derived from the joint prior distri-

bution (3.22) by applying the standard rules of multivariate Gaussian conditioning29

[Sch17, Example 7.3], where the conditioning takes place over all variables whose

value is known. �is procedure leads to the following result.

29If x ∼ N(µ, Σ) has partition x = (x1
x2
), and µ = (µ1

µ2
) and Σ = (Σ11 Σ12

Σ21 Σ22
) are partitioned simi-

larly, then the conditional distribution of x1∣x2 is given byN (µ1 + Σ12Σ
−1
22(x2 − µ2), Σ11 − Σ12Σ

−1
22Σ21).
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Proposition 3.3 �e conditional distribution p(Zi+1∣Zi , Fi−s+1, . . . , Fi) under the
Gaussian process prior given in (3.22), with covariance kernel basis functions λ(t) and
Λ(t) as in (3.19) and (3.20), is a δ-measure concentrated on the s-step Adams–Bashforth

predictor Zi + h∑s−1
j=0 β

AB
j,s Fi− j.

Proof. Recall that h = ti − ti−1 for all i and take ti = 0 without loss of generality.

Straightforward substitutions into (3.19) give that

λi ≡ λ(0) = (0, 1, 0, . . . , 0)T
λi−1 ≡ λ(−h) = (0, 0, 1, . . . , 0)T
⋮

λi−s+1 ≡ λ(−(s − 1)h) = (0, 0, 0, . . . , 1)T
and it follows that λTi−pλi−q = δpq, for all 0 ≤ p, q ≤ s − 1.
Similarly, Λi ≡ Φ(0) = (1, 0, 0, . . . , 0)T since every component of Λ(t) bar the �rst
is a polynomial of degree s containing a factor t. Finally

Λi+1 ≡ Λ(h) = (1 ∫
h

0
L0∶s−1
0 (u)du . . . ∫

h

0
L0∶s−1
s−1 (u)du)T

In the following, we recall the notation Λ
( j)
i+1, which denotes the j’th component of

Λi+1. By (3.22) and the formulae in footnote 29, we have

E(Zi+1∣Zi ,Fi−s+1, . . . , Fi) =

⎛⎜⎜⎜⎜⎝
ΛT

i+1Λi

ΛT
i+1λi⋮

ΛT
i+1λi−s+1

⎞⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎝
ΛT

i Λi ΛT
i λi ⋯ ΛT

i λi−s+1
λTi Λi λTi λi ⋯ λTi λi−s+1⋮ ⋮ ⋱ ⋮

λTi−s+1Λi λTi−s+1λi+1 . . . λTi−s+1λi−s+1

⎞⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Is+1

−1 ⎛⎜⎜⎜⎜⎝
Zi

Fi⋮
Fi−s+1

⎞⎟⎟⎟⎟⎠

= (ΛT
i+1Λi)Zi + s−1∑

j=0

(ΛT
i+1λi− j)Fi− j

= Zi + s−1∑
j=0

Λ
( j+2)
i+1 Fi− j

= Zi + s−1∑
j=0

[ ∫ h

0
L0∶s−1
j (u)du] ⋅ Fi− j

= Zi + h s−1∑
j=0

βAB
j,s Fi− j since ∫

h

0
L0∶s−1
j (u)du = hβAB

j,s

which is equal to the s-step Adams–Bashforth predictor de�ned in (3.11) and (3.13).
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Next we use the same substitutions in the formula for conditional variance.

Var(Zi+1∣Zi , Fi−s+1, . . . , Fi) = ΛT
i+1Λi+1 −

⎛⎜⎜⎜⎜⎝
ΛT

i+1Λi

ΛT
i+1λi⋮

ΛT
i+1λi−s+1

⎞⎟⎟⎟⎟⎠

T

I
−1
s+1

⎛⎜⎜⎜⎜⎝
ΛT

i Λi+1

λTi Λi+1⋮
λTi−s+1Λi+1

⎞⎟⎟⎟⎟⎠

= ΛT
i+1Λi+1 −

⎛⎜⎜⎜⎜⎜⎝

1

Λ(2)i+1⋮
Λ(s+1)i+1

⎞⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎝

1

Λ(2)i+1⋮
Λ(s+1)i+1

⎞⎟⎟⎟⎟⎟⎠
= ΛT

i+1Λi+1 − ΛT
i+1Λi+1

= 0

Since a Gaussian distribution is fully speci�ed by its mean and variance, the proposi-

tion follows.

�is construction is e�ectively a di�erent derivation of the classical non-probabilistic

Adams–Bashforth method. However, because of the natural probabilistic structure

provided by the Gaussian process framework, we can now augment the vectors λ(t)
and Λ(t) with an additional term to generate a conditional distribution for Zi+1 with

non-zero variance. In Teymur et al. [Tey16], we considered an additional term of the

form αhsL−1∶s−1−1 , i.e. the �rst Lagrange polynomial of one order higher than before.

We de�ne the vectors

λ+(t) = (0 L 0∶s−1
0 (t) L0∶s−1

1 (t) . . . L0∶s−1
s−1 (t) αhsL−1∶s−1−1 (t))T (3.23)

Λ+(t) = ∫
t

0
λ+(u)du

= (1 ∫
t

0
L0∶s−1
0 (u)du . . . ∫

t

0
L0∶s−1
s−1 (u)du ∫

t

0
αhsL−1∶s−1−1 (u)du)T

(3.24)

Now considering the analogous Gaussian process constructions to (3.21) and (3.22),

we have the following result:

Proposition 3.4 �e conditional distribution p(Zi+1∣Zi , Fi−s+1, . . . , Fi) under the
Gaussian process prior given in (3.22), with covariance kernel basis functions λ+(t) and
Λ+(t) as in (3.19) and (3.20) replaced by their augmented versions (3.23) and (3.24)

respectively, is Gaussian with mean equal to the s-step Adams–Bashforth predictor

Zi + h∑s−1
j=0 β

AB
j,s Fi− j and—setting α = d(s+1)x/dt(s+1)(τ), where τ is a particular

value of t in the range (ti−s+1, ti+1)—standard deviation equal to the absolute value of

its local truncation error.
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Proof. We follow the same reasoning as in Proposition 3.3. Since the additional basis

function at the end of the augmented vector λ+i− j is zero for all 0 ≤ j ≤ s−1, each inner
product of the form λ+Tλ+, Λ+Tλ+ and λ+TΛ+ is equal to the corresponding inner

product λTλ, ΛTλ and λTΛ, as no additional contribution from the new extended

basis arises. It therefore su�ces to check only the terms of the form Λ+TΛ+.

Integrating the additional basis function with respect to t gives a polynomial of degree

s + 1 with a constant factor t. Evaluating this at ti = 0 means that the �nal component

is also 0 in Λ+i . �erefore Λ+Ti+1Λ
+
i = ΛT

i+1Λi and Λ+Ti Λ+i = ΛT
i Λi . It follows that

the expression for E(Zi+1∣Zi , Fi , . . . , Fi−s+1) is exactly the same as when using the

unaugmented basis function set.

�e argument in the previous paragraph means we can immediately write down that

Var(Zi+1∣Zi , Fi , . . . , Fi−s+1) = Λ+Ti+1Λ
+
i+1 − ΛT

i+1Λi+1

Since the �rst s + 1 components of Λ+Ti+1 are equal to the s + 1 components of ΛT
i+1, this

expression reduces to the contribution of the additional basis element. �erefore

Var(Zi+1∣Zi , Fi , . . . , Fi−s+1) = (αhs ∫
h

0
L−1∶s−1−1 (u)du)2

= (αhs+1βAM
−1,s+1)2

Up to sign, the Adams–Moulton coe�cient βAM
−1,s+1 is equal to the error constant for

the s-step Adams–Bashforth method [But08, §244] and the proposition follows.

Example

In order to demystify the construction, we now exhibit a concrete example for the

case s = 3. �e conditional distribution of interest is p(Zi+1∣Zi , Fi , Fi−1, Fi−2). In the

non-probabilistic case, the vectors of basis functions become

λ(t, s = 3) = (0 (t + h)(t + 2h)
2h2

t(t + 2h)−h2 t(t + h)
2h2

)
Λ(t, s = 3) = (1 t(2t2 + 9ht + h2)

12h2
t2(t + 3h)−3h2 t2(2t + 3h)

12h2
)

Simple calculations now give that

E(Zi+1∣Zi , Fi , Fi−1, Fi−2) = Zi + h (23
12
Fi − 4

3
Fi−1 + 5

12
Fi−2)

Var(Zi+1∣Zi , Fi , Fi−1, Fi−2) = 0
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�e probabilistic version follows by setting

λ+(t, s = 3) = (0 (t + h)(t + 2h)
2h2

t(t + 2h)−h2 t(t + h)
2h2

αt(t + h)(t + 2h)
6

)
Λ+(t, s = 3) = (1 t (2t2 + 9ht + h2)

12h2
t2 (t + 3h)−3h2 t2 (2t + 3h)

12h2
αt2(t + 2h)2

24
)

and further calculation shows that

E(Zi+1∣Zi , Fi , Fi−1, Fi−2) = Zi + h (23
12
Fi − 4

3
Fi−1 + 5

12
Fi−2)

Var(Zi+1∣Zi , Fi , Fi−1, Fi−2) = (3h4α
8
)2

Taking α = d(s+1)x/dt(s+1)(τ) for some τ ∈ (ti−s+1, ti+1), we see that 3h4α/8 is equal
to the absolute value of the local truncation error of the 3-step Adams–Bashforth

method.

d Remark 3.6 It is straightforward to see that sampling Zi+1 from the conditional

distribution p(Zi+1∣Zi , Fi , Fi−1, . . . , Fi−s+1, ϕ) using themodel proposed in Proposition

3.4 is equivalent to running the classical Adams–Bashforth integrator and perturbing

the output with a zero-mean Gaussian random variable ξi with standard deviation

proportional to hs+1 at each step. �e latter perspective shows that the integrator is

entirely analogous structurally to the algorithm of Conrad et al. [Con16], but extended

to the multistep setting. �e formal argument that the construction is convergent to

the same order as the underlying classical method is given in the proof of �eorem 3

in the next section. d

d Author ’s note In the paper Teymur et al. [Tey16] in which this construction

was �rst introduced, it was then built upon in several ways, some of which we sub-

sequently concluded were of limited use or even methodologically inconsistent. In

fact, this realisation motivated much of the improved (and not inconsistent) work

presented in Chapter 4 of this thesis—the details will be given there.

In short, the variance of the perturbations arising from the use of the augmented

basis vectors (3.23) and (3.24) can be shown not to be correct, since it is a factor of h

smaller than the bound allowed for by the convergence argument of�eorem 3. �is

is a direct consequence of the construction given in Proposition 3.4. Experimental

evidence, arising from the process of calibration and presented in Chapter 5, strongly

supports the view that in the practical design of a randomised integrator, the exponent

of h should indeed be taken tight to the theoretical bound. �e method suggested in

Teymur et al. [Tey16] for setting the scalar α is therefore also moot, since we cannot

treat α as an h-independent parameter if it scales a term which is itself dependent on

h in the wrong way.
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Secondly, an extension to implicit Adams–Moulton methods was proposed. While

the convergence argument to be given in �eorem 3 does apply for implicit multistep

methods—a fact we later rely on in our proof of �eorem 4—the speci�c Gaussian

process construction analogous to that just given for Adams–Bashforth methods

is inconsistent in a particular subtle sense that we describe in Section 4.1.1. �is

observation motivated the novel construction in our subsequent paper Teymur et al.

[Tey18] and is covered in detail in Chapter 4 of this thesis.

Having made these points, it is worth pointing out for clarity those parts of the fore-

going work which are novel and do work. �e Adams–Bashforth construction is valid

and the Gaussian process approach to deriving it is—to the best of our knowledge—

new. While the particular form of the probabilistic integrator covariance kernel

results in a suboptimal posterior variance, the posterior mean does align with the

classical Adams–Bashforth predictor—this gives the construction the same status as

algorithms such as the probabilistic Runge–Kutta solver of Schober et al. [Sch14], in

which the scaling of the posterior variance is also le� unresolved.

Finally, the main convergence result in �eorem 3, to be given in the next section, is

valid and the bound it gives on the variance of the stepwise perturbations is strictly

weaker than that required in the construction just given. Furthermore, the analysis

applies to both explicit and implicit linear multistep methods, also covering those not

of Adams type. �is generality allows us to appeal to the result once again during the

later proof of �eorem 4. d

3.3.2 Convergence of the probabilistic multistep integrator

We now give the analysis that proves the convergence of the multistep probabilistic

integrator constructed in Section 3.3.1, in the same mean-square sense of �eorem 2.

�e version presented here is a modi�ed version of that published as �eorem 3 in

Teymur et al. [Tey16]. In fact, we give it in a signi�cantly more general form, not tying

it to the speci�c construction from Section 3.3.1, and furthermore encompassing the

case of implicit multistep integrators as well as those not of Adams type.

Theorem 3 Consider the initial value problem (1.9). Assume the vector �eld f (⋅, θ)
is globally Lipschitz with Lipschitz constant L f . For some end time tend > 0 and time-

step h > 0 de�ne a grid ti = ih for 0 ≤ i ≤ N ≡ ⌊tend/h⌋. Denote the exact solution
of (1.9) at time ti by Xi .

For �xed k ≥ 2, consider the linear multistep IVP solver of the form

Z̃i+1 = − k−2∑
j=0

a jZ̃i− j + h k−2∑
j=−1

b j f (Z̃i− j) (3.25)
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Assume the coe�cients a j and b j are chosen such that this numerical scheme is of order

p, i.e. the local truncation error ei incurred in one step of length h is O(hp+1) and,
furthermore, that the initialisation procedure used to calculate Z̃1, . . . , Z̃k−2 is also of

order p.

Let ξi ∼ N(0, αhr ⋅ Id), i.i.d. for each k − 1 ≤ i ≤ n and some α > 0. �en the

randomised method de�ned by

Zi+1 = − k−2∑
j=0

a jZi− j + h k−2∑
j=−1

b j f (Zi− j) + ξi (3.26)

has mean-square order of convergence p if and only if r ≥ 2p + 1. Speci�cally, for some

constant C > 0 independent of h but possibly depending on tend, it holds that

max
i

E ∥Zi − Xi∥2 ≤ Ch2p (3.27)

Proof. Recall that we denote the true solution of the initial value problem (1.9) at

time ti by Xi ≡ x(ti). If we substitute the true solution values for their numerical

approximations into (3.26), we have

Xi+1 = − k−2∑
j=0

a jXi− j + h k−2∑
j=−1

b j f (Xi− j) + τi (3.28)

where the local truncation error τi = O(hp+1), by the assumption that the underlying

solver is of order p. If we now subtract (3.26) from (3.28) and denote the accumulated

error at iteration i by Ei ∶= Xi − Zi , we have

Ei+1 = − k−2∑
j=0

a jEi− j +Qi + τi − ξi (3.29)

where

Qi ∶= h
k−2∑
j=−1

b j∆Fi− j, ∆Fi− j ∶= f (Xi− j) − f (Zi− j).
Following Buckwar &Winkler [Buc06], we rearrange this k-step recursion to give

an equivalent one-step recursion in an higher-dimensional space. Using the trivial

identities

Ei = Ei

Ei−1 = Ei−1

⋮
Ei−k+2 = Ei−k+2
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we obtain

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ei+1

Ei⋮⋮
Ei−k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ Ei+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−a0Id −a1Id ⋯ −ak−1Id
Id 0 ⋯ 0⋱ ⋱⋱ ⋱
0 Id 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ A

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ei

Ei−1⋮⋮
Ei−k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ Ei

+
⎛⎜⎜⎜⎜⎜⎜⎜⎝

Qi

0⋮⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=∶ Qi

+
⎛⎜⎜⎜⎜⎜⎜⎜⎝

τi
0⋮⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=∶ Ti

−
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ξi
0⋮⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=∶ Ξi

or in compact form,

Ei+1 = AEi +Qi + Ti − Ξi , i = k − 1, . . . ,N , N = ⌊h−1tend⌋ (3.30)

Note that each column vector in this equation is of dimension kd while the matrix A

is kd × kd.
For the subsequent argument it will be necessary to �nd a scalar product inducing a

matrix norm such that the norm of the matrix A is less or equal to 1.

In order to do this, we will require some new de�nitions and several straightforward

but non-trivial results from linear analysis, which we will collect here. We state them

and give references to proofs, rather than reproduce lengthy rigorous arguments that

can be found in several standard references.

1. �e characteristic polynomial of a (not necessarily linear) multistep method is

de�ned as ψ(u) = ∑k−2
j=0 = ak−2− ju j, where the coe�cients a j are as in equation

(3.25) [Hac14, §5.5].

2. A multistep method is stable if all roots u j (in general complex) of its char-

acteristic polynomial ψ(u) satisfy either ∣u j∣ < 1 or ∣u j∣ = 1, with those roots

satisfying the latter condition required to be simple roots (i.e. those with multi-

plicity one) [Hac14, De�nition 5.23]. �is condition is called Dahlquist’s root

condition.

3. A multistep method that is linear, i.e. of the speci�c form (3.25), and where the

coe�cients a j and b j are chosen such that the method is convergent as de�ned

in Section 3.1, is stable in the sense of point 2. In particular, this includes all

Adams-type methods so far discussed [Hac14,�eorem 5.42].

4. �e matrix A arising from a multistep method as in equation (3.30) is called

the method’s companion matrix [Hac14, De�nition 5.37]. If the method is

stable, this matrix is such that its eigenvalues are equal to the roots u j of its

characteristic polynomial ψ(u) [Hai08, §III.4 Lemma 4.4].
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5. Any square matrix A can be decomposed as PJP−1 where P is an invertible

matrix and J is a matrix in Jordan canonical form—that is, a block matrix with

each block J j of size equal to the algebraic multiplicity of an eigenvalue u j of

A. �e J j are all such that each entry on its leading diagonal is the eigenvalue

u j and each entry in its �rst super-diagonal is 1 [Hor12, §3.1]. We say that A is

similar to J.

6. �e discrete Grönwall lemma can be stated in many forms; we use the version

given by Law et al. [Law15, Lemma 1.14]. Given constants a and b > 0 and a

sequence of positive numbers c0, c1, . . . > 0, then for b /= 1 it holds that

ci+1 ≤ bci + a Ô⇒ ci ≤ b ic0 + a 1 − b i

1 − b .

We now proceed with the main thrust of the proof. �e following argument is

modi�ed from Horn & Johnson [Hor12, Lemma 5.6.10] and shows that for the case

we are interested in—a convergent linear multistep method of the form (3.25)—we

can construct a scalar product such that the companion matrix A has norm less than

or equal to 1 in the induced matrix norm.

Using point 5, we �nd the matrix J in Jordan canonical form which is similar to

A. For each Jordan block J j, of size m ×m, we consider the diagonal matrix D j =

diag(q j, q2j , . . . , q
m
j ) and note that

D jJ jD
−1
j =

⎛⎜⎜⎜⎜⎝
u j q−1j⋱ ⋱⋱ q−1j

u j

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
u j ⋱ ⋱

u j

⎞⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎝
0 q−1j⋱ ⋱⋱ q−1j

0

⎞⎟⎟⎟⎟⎠
(3.31)

For a vector v ∈ Rm, recall the de�nition of the Euclidean vector norm ∣∣v∣∣2 =

√
vTv

and the induced matrix 2-norm ∣∣∣M∣∣∣2 = maxv≠0 ∣∣Mv∣∣2/∣∣v∣∣2 = max∣∣v∣∣2=1 ∣∣Mv∣∣2.
Using the triangle inequality, we have from (3.31)

∣∣D jJ jD
−1
j v∣∣2 ≤ ∣u j∣∣∣v∣∣2 + q−1j ∣∣v∣∣2 = (∣u j∣ + q−1j )∣∣v∣∣2 (3.32)

Since all eigenvalues u j with ∣u j∣ = 1 are simple, for blocks of sizem > 1 we must have∣u j∣ < 1. �us we can choose a q j large enough such that ∣u j∣ + q−1j < 1 and it follows

that for such a q j we have ∣∣∣D jJ jD
−1
j ∣∣∣2 < 1

Repeating for each Jordan block it follows that

1 ≥max
j
∣∣∣D jJ jD

−1
j ∣∣∣2 = ∣∣∣DJD−1∣∣∣

2
= ∣∣∣DP−1APD−1∣∣∣

2
= ∣∣∣Λ−1AΛ∣∣∣

2
(3.33)
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where we have de�ned Λ ∶= PD−1. Note that equality is achieved in the �rst relation

if and only if there exist simple unit-modulus eigenvalues u j.

Consider now the vector V ∶= (vT1 , vT2 , . . . , vTk )T ∈ Rkd . �is column vector, made up

of k concatenated d-tuples v j, resembles in form the vector terms appearing in (3.30).

We now choose a scalar product for V ,W ∈ Rkd as

⟨V ,W⟩∗ ∶= ⟨Λ−1V , Λ−1W⟩2 (3.34)

where ⟨⋅, ⋅⟩2 is the standard Euclidean inner product ⟨v ,w⟩2 = vTw. We can then write∣∣ ⋅ ∣∣∗ for the induced vector norm and ∣∣∣ ⋅ ∣∣∣∗ for the induced matrix norm respectively,

with

∣∣∣A∣∣∣∗ = max
∣∣V∣∣
∗
=1
∣∣AV∣∣∗ = max

∣∣Λ−1V∣∣2=1
∣∣Λ−1AV∣∣

2
= max
∣∣W∣∣2=1

∣∣Λ−1AΛW∣∣
2
= ∣∣∣Λ−1AΛ∣∣∣

2
≤ 1

as required. We also have

⟨V ,W⟩∗ = VTΛ−TΛ−1W = VTΛ∗W with Λ∗ = Λ−TΛ−1 = (λ∗i j)1≤i , j≤k ⊗ Id

(3.35)

Due to the equivalence of norms there exist constants c∗, c∗ > 0 such that

∣∣V∣∣22 ≤ c∗∣∣V∣∣2∗ and ∣∣V∣∣2∗ ≤ c∗∣∣V∣∣2∞ for all V ∈ Rkd , (3.36)

where ∣∣V∣∣22 = ∑ j=1,...,k ∣∣v j∣∣2 and ∣∣V∣∣∞ = max j=1,...,k ∣∣v j∣∣.
For the particular vectors Ṽ = (vT , 0, . . . , 0)T and W̃ = (wT , 0, . . . , 0)T with Ṽ , W̃ ∈
Rkd and v ,w ∈ Rd , one has

⟨Ṽ , W̃⟩∗ = λ∗11⟨v ,w⟩2 = λ∗11v
Tw , (3.37)

where λ∗11 is as in (3.35).

Having established the various necessary analytical preliminaries, we now proceed

with the core bounding argument. Applying the newly-de�ned norm ∣∣ ⋅ ∣∣∗ to (3.30),
squaring and taking expectations gives

E∣∣Ei+1∣∣2∗ = E∣∣AEi +Qi + Ti − Ξi ∣∣2∗
= E∣∣AEi +Qi + Ti ∣∣2∗ +O(hr)
= E∣∣AEi +Qi ∣∣2∗ + 2 ⋅E⟨h1/2(AEi +Qi), Tih−1/2⟩∗ +E∣∣Ti ∣∣2∗ +O(hr)
= E∣∣AEi +Qi ∣∣2∗ + 2 ⋅E⟨h1/2(AEi +Qi), Tih−1/2⟩∗ +O(h2p+2) +O(hr)

(3.38)
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We now consider the term ∣∣AEi +Qi ∣∣2∗ and expand it as

∣∣AEi +Qi ∣∣2∗ = ∣∣AEi ∣∣2∗´¹¹¹¹¸¹¹¹¹¹¶
(1)

+ ∣∣Qi ∣∣2∗´¹¸¹¶
(2)

+ 2 ⋅ ⟨AEi ,Qi⟩∗´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3)

For term (1) we immediately have ∣∣AEi ∣∣2∗ ≤ ∣∣Ei ∣∣2∗ by construction of the norm ∣∣ ⋅ ∣∣∗.
For term (2) we have that

∣∣Qi ∣∣2∗ = λ∗11∣∣Qi ∣∣2 from (3.37)

= λ∗11∣∣h∑k−2
j=−1 b j∆Fi− j∣∣2

≤ λ∗11kh
2∑k−2

j=−1 ∣∣b j∆Fi− j∣∣2 by Cauchy-Schwarz

≤ λ∗11kh
2L2

f ∑k−2
j=−1 b

2
j ∣∣Ei− j∣∣2 since f is Lipschitz

≤ λ∗11kh
2L2

fC
2
b∑k−2

j=−1 ∣∣Ei− j∣∣2 where C2
b = max

j=−1,...,k−2
b j

≤ λ∗11kh
2L2

fC
2
bc
∗∣∣Ei ∣∣2∗ from (3.36)

= Γ2h2∣∣Ei ∣∣2∗ where Γ2 = λ∗11kL
2
fC

2
bc
∗

> 0

For term (3) we have 2 ⋅ ⟨AEi ,Qi⟩∗ ≤ 2 ⋅ ∣∣AEi ∣∣∗ ⋅ ∣∣Qi ∣∣∗ ≤ 2Γh∣∣Ei ∣∣2∗ and it follows that
∣∣AEi +Qi ∣∣2∗ ≤ (1 +O(h))∣∣Ei ∣∣2∗

�en from (3.38) we have

E∣∣Ei+1∣∣2∗ = E∣∣AEi +Qi ∣∣2∗ + 2 ⋅E⟨h1/2(AEi +Qi), Tih−1/2⟩∗ +O(h2p+2) +O(hr)
≤ (1 +O(h))E∣∣Ei ∣∣2∗ + 2h ⋅E∣∣AEi +Qi ∣∣2∗ + 2h−1 ⋅E∣∣Ti ∣∣2∗ +O(h2p+2) +O(hr)
≤ (1 +O(h))E∣∣Ei ∣∣2∗ +O(h2p+1) +O(hr)
= (1 +O(h))E∣∣Ei ∣∣2∗ +O(h2p+1)

(3.39)

where the last line follows from the condition r ≥ 2p + 1. With arbitrary constants

l1, l2 and l3, we then take a = l1h2p+1, b = 1 + l2h and ci ∶= E∣∣Ei ∣∣2∗ for k − 1 ≤ i ≤ N

(with ck−1 ≡ E∣∣Ek−1∣∣2∗ = l3h2p+1, by the assumption that the initialisation procedure

is of order p) in the statement of the Grönwall lemma and apply its result. �is gives

max
i

E∣∣Ei ∣∣2∗ ≤ Ch2p (3.40)

for some constant C > 0. Since Ei = (Ei , Ek−i ,⋯, Ei−k+1)T and Ei ≡ Zi − Xi , we

conclude that

max
i

E∣∣Zi − Xi ∣∣2 ≤ Ch2p (3.41)
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Corollary 3.1 �e probabilistic integrator de�ned in Proposition 3.4 is convergent.

Proof. �e s-step Adams–Bashforth integrator can be written in the form (3.25) by

taking k = s + 1, a0 = −1, a j = 0 for j = 1,⋯, k − 2, and b j = βAB
j+1,s. �e underlying

integrator is of order s and the perturbations at each step are Gaussian with standard

deviation proportional to the local truncation error, which isO(hs+1). �is implies

r = 2p + 2 and hence the constraint in the statement of�eorem 3 is clearly seen to

be satis�ed, and the claim follows.

Corollary 3.2 �e probabilistic s-step Adams–Bashforth integrator de�ned by

Zi+1 = Zi + s−1∑
j=0

βAB
j,s f (Zi− j) + ξi (3.42)

with ξhi ∼ N(0, αh2s+1) i.i.d and α > 0, is convergent.

Proof. Exactly as Corollary 3.1 but with r = 2p + 1.
Corollary 3.3 �e probabilistic s-step Adams–Moulton integrator de�ned by

Zi+1 = Zi + s−1∑
j=−1

βAM
j,s f (Zi− j) + ξi (3.43)

with ξhi ∼ N(0, αh2s+3) i.i.d and α > 0, is convergent.

Proof. Take k = s + 1, a0 = −1, a j = 0 for j = 1,⋯, k − 2, and b j = βAM
j,s . Since the

s-step Adams–Moulton integrator is of order s + 1, we have p = s + 1. �erefore

r = 2s + 3 = 2(p − 1) + 3 = 2p + 1, and the result holds.

d Remark 3.7 Corollary 3.2 generalises the integrator from Proposition 3.4 to

give explicitly the maximum noise scale consistent with the convergence argument

of �eorem 3, i.e. the limiting case r = 2p + 1. In Chapter 5 we argue that the noise

scale suggested in Corollary 3.2 is the correct one, so long as there exists a method for

calibrating the constant α.

Corollary 3.3 shows that no theoretical impediment exists to applying the same

approach to an implicit Adams-type integrator. �e convergence argument is identical.

Nevertheless, as noted in Section 3.3.1 and expanded upon in Section 4.1.1, this is not

a practical algorithm, due to the fact that it is de�ned implicitly. �is observation

motivates the modi�cations and extensions presented in the next chapter. d
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4
IMPLICIT PROBABILISTIC ODE

SOLVERS

�e integrator proposed in Section 3.3 modi�es explicit multistep methods by treating

their stepwise truncation error as a random variable, resulting in a randomised

algorithm. A natural question to ask is whether a similar construction can be found

to modify implicit IVP solvers to also give a probabilistic description of solver error.

Corollary 3.3 shows that the convergence analysis of �eorem 3 remains valid for

implicit Adams-type methods, however the naive modi�cation of explicit methods to

the implicit case can throw up subtle issues which either render them inconsistent or

at the very least di�cult to use. We will describe these issues in Section 4.1.1.

Before introducing the substance of our new construction, we take a brief diversion

to discuss why implicit methods are an essential component in the numerical analyst’s

arsenal.

4.1 benefits of implicit methods

Explicit IVP solvers are intrinsically extrapolative in nature. What we mean by

this is that the next point Zi+1 is determined independently of the evolution of the

actual system dynamics beyond time ti . In the case of Adams–Bashforth methods,

the de�nition in Section 3.1.3 makes clear that the polynomial interpolator of the

values Fi , . . . , Fi−s+1 is extended to time ti+1 with no opportunity for feedback from

the evolution of the de�ning function f (⋅, θ). It is intuitively clear—though this

statement is not precise—that this approach assumes a certain degree of smoothness
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in f along with a consistency in its high-level features across a broad time interval—or

at least does not account for potentially pathological behaviour of f—in order to

return adequate approximations.

Implicit methods speci�cally account for the evolution of the dynamics of the system

between time points ti and ti+1. For certain types of problems, this can be the di�erence

between an acceptable output and a meaningless one. �e term for problems where

the de�ning dynamics are di�cult to resolve for explicit solvers is ‘sti� ’. In reality this

term is just as vague as the description in the previous paragraph, though it certainly

encapsulates such features of f as smoothness, consistently-varying time scales, and

other lack of pathologies.

In general it is di�cult to clearly state what is meant by a sti� problem, and authors

disagree on its de�nition. Jackiewicz [Jac09, §1.7] gives a comprehensive survey of the

di�erent de�nitions given by various prominent authors in well-known numerical

analysis texts. We collect a small sample of these here, along with some from other

sources, if only to highlight this lack of consensus.

Ramsay et al. [Ram07] posit that sti� problems are those “for which solutions begin-

ning at varying initial values tend to converge to a common trajectory” and which

“requiremethods thatmake use of the Jacobian ∂ f /∂x”. Several authors [Ise09; Qua00;
Atk09; Lam91; LeV07] de�ne a sti� problem as one where it is the requirements of

stability that constrain the step size, rather than simply those of solution accuracy.

Burrage [Bur95] suggests that sti� problems are those with large values of the product

L f (tend − t0)30. Other authors [Stu98; Sha94] make reference to problems with two

vastly di�erent time-scales present, where the components varying quickly can have

a signi�cant e�ect on the trajectories of those varying more slowly.

Possibly the most compelling de�nition—though one which seems circular initially—

is that given by Hairer &Wanner [Hai10, §IV.1]. �ey write that “sti� equations are

problems for which explicit methods don’t work”. �is recalls the de�nition from

one of the earliest works on the topic, by Curtiss & Hirschfelder [Cur52], in which

the authors state that “sti� equations are equations where certain implicit methods

. . .perform better, usually tremendously better, than explicit ones”.

Nevertheless, all authors agree that sti� problems are ubiquitous in real-world models

and that methods to solve them to an acceptable degree of accuracy are required, and

can o�en justify the increase in computation which results on these grounds. It is

therefore an obvious next question whether implicit probabilistic integrators can be

de�ned analogous to the explicit ones considered in Chapter 3.

30Recall that L f denotes the Lipschitz constant of the function f de�ning the dynamics of the ODE,
while (tend − t0) is the complete time interval over which the problem is to be considered.
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Figure 4.1: Bayesian network representation of an indicative section of the joint
distribution p(Z1∶N , F0∶N−1∣θ , ϕ) as decomposed in Equation (4.2), with s = 2.
Comparison with �gure 3.1 highlights the inconsistency described in Section 4.1.1;
the red arrows indicate the cycles now present in the model.

4.1.1 Naive implicit probabilistic integrators

In the paper Teymur et al. [Tey16], in which the Gaussian process formulation of a

randomised Adams–Bashforth solver was introduced, an extension was mooted to

the case of the implicit Adams–Moulton method. �is involved de�ning a Gaussian

process prior analogous to equation (3.22) by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

with modi�cations, mutatis mutandis, to the de�nitions of the basis function vec-

tors λ(t) and Λ(t) de�ned in (3.19) and (3.20). �e corresponding version of the

decomposition (3.18) is given by the following equation, and its Bayesian network

representation in Figure 4.1.

p(Z1∶N ∣θ , ϕ) = ∫ [ N−1∏
i=0

p(Fi ∣Zi , θ)p(Zi+1∣Zi , Fi+1, Fi , . . . , Fi−s+1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s+1 points

, ϕ)]dF0∶N−1 (4.2)

Closer inspection reveals that this approach is inconsistent, because it gives two

mutually incompatible meanings to Fi+1—one linearly related to Zi+1 by the joint

Gaussian prior (4.1), and one non-linearly related to Zi+1, resulting from passing its

value to the non-linear function f (⋅, θ).
In a related context, a similar inconsistency is described at length in a paper by

Macdonald et al. [Mac15]. �is paper is the culmination of several works whose

principal common idea (‘gradient matching’) was summarised in Section 1.4.2. As

described there, these papers aim to minimise the discrepancy between the gradient
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of a surrogate data interpolant modelled as a Gaussian process, and the gradient given

by the derivative output from the ODE.

In an earlier paper in that paradigm, by Barber & Wang [Bar14], the joint model

for these gradients is constructed in a way that treats the derivative Ẋ as a separate

random variable to the solution X. �e implied assumption is then that Ẋ is related

to X in two di�erent ways—one linearly through the GP model and one non-linearly

through the ODE. �is causes a problematic statistical inconsistency, in that X must

�rst be marginalised out to eliminate it, but is then subsequently conditioned upon.

Macdonald et al. [Mac15], who explore this subtle detail at length, propose various

convoluted strategies for dealing with this problem, including introducing a dummy

variable X̃ to replace X in an attempt to restore the directionality of the joint model,

but their approach ultimately founders due to the di�culty of de�ning the resulting

conditional distributions such as p(X̃∣X), p(X∣X̃ , Ẋ) and so forth. Ranciati et al.

[Ran16, §2.3], whose surrogate model is formed of penalised splines rather than

Gaussian processes, also discuss this issue and their proposal also introduces a dummy

variable like X̃. By introducing several other assumptions, they thereby identify a

restricted set of problems for which the inconsistency can be partially worked around.

Ultimately, the clash between the two meanings of Ẋ causes an insurmountable

consistency issue for the gradient matching approach in the general case. �e prior

model suggested by (4.1) fails due to the same inconsistency. It is apparent from the

product in equation (4.2) that the variable Fi+1 is assumed both to depend on Zi+1,

but is also conditioned upon in the calculation of Zi+1.

A second ‘naive’ idea would be to sidestep the Gaussian process formulation entirely

and directly appeal to Corollary 3.3 by forming a randomised method based on the

classical Adams–Moulton integrator. �is would require calculating the usual non-

probabilistic Adams–Moulton predictor for the next time step ti+1 and perturbing

it with a realisation of a Gaussian random variable ξi with variance constrained in

accordance with the convergence result of �eorem 3.

�is approach is di�cult to implement practically since it requires the exact speci�ca-

tion of the Adams–Moulton predictor, a quantity only de�ned implicitly. Perturbing

an inexact quantity throws up several issues around, for instance, how accurately the

numerical procedure used for calculating this value is required to be, whether this

a�ects the convergence properties of the perturbed method, and so forth.

Of course, the classical Adams–Moulton integratormust itself advance to the next step

based on an approximation to the true predictor.31 Nevertheless it is hard to justify a

procedure which expends signi�cant computation on an intermediate procedure to

accurately solve an implicit relation, only to then perturb the solution away again in
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an attempt to model numerical error. Lastly, while this approach would depend on

the dynamics up to time ti+1 through the calculation of the Adams–Moulton predictor,

the error model for the predictor is still not informed by the system dynamics, being

simply a centred Gaussian calibrated in advance.

�e idea that forms the core of our novel implicit probabilistic integrator resolves both

of these problems. �e construction was �rst introduced in the paper [Tey18], jointly

authored with Han Cheng Lie, Tim Sullivan and Ben Calderhead, and presented at the

�irty-Second Conference on Neural Information Processing Systems in Montréal,

in December 2018.

4.2 implicit probabilistic integrators

We introduce the idea in the one-dimensional case �rst, then later generalise to

the multidimensional setting. Consider the following distribution which directly

advances the integrator one step and depends only the current point:32

p(Zi+1 = z∣Zi , θ , η) ∝ g(r(z), η) (4.3)

In this equation, r(z) is a positive discrepancy measure in derivative space designed to

serve as a measure of the error incurred by an implicit multistep method. It is de�ned

in the coming paragraphs. g is a η-scaled functional transformation which ensures

that the expression on the right-hand side of (4.3) can, subject to normalisation, be

made into a valid probability distribution in the variable z.

A concrete example will illuminate the de�nition. Consider the �rst-order implicit

linear method—the backward Euler method. �is was introduced in Section 3.1.1 and

we give its de�ning relation (3.7) once again:

Zi+1 = Zi + hFi+1 (4.4)

As explained in Section 3.1.1, this expression can typically only be solved by an iterative

calculation, since Fi+1 ≡ f (Zi+1, θ) is of course unknown. However, if the random
variable Zi+1 has realised value z, then we may express Fi+1 as a function of z. Speci�-

cally, by rearranging (4.4) we have

Fi+1(z) =
z − Zi

h
(4.5)

31A discussion of the e�ect of this phenomenon on the de facto global convergence order of implicit
integrators can be found in Palais & Palais [Pal09, Appendix I]. In particular, it is possible to quantify
the number of �xed-point iterations required to maintain the method’s global convergence order.
However, it is not obvious how to extend this analysis to a perturbed integrator.

32In this section, we use the lower case z to refer to the realised value of the random variable Z i+1

representing the next step of the probabilistic integrator.
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�e discrepancy between the value of Fi+1(z) and the value of f (z, θ) can then be

used as a measure of the error in the linear method, and penalised—this is r(z). �is

discrepancy is e�ectively the explicit separating out of the two di�erent meanings of

Fi+1 arising from the naive model (4.1). Suppressing for now the explicit dependence

on θ and η, we write

p(Zi+1 = z∣Zi) =
1

Kh

exp(− 1

2η2
(z − Zi

h
− f (z, θ))2) (4.6)

Here, Kh > 0 is the normalising constant of the distribution. Comparing equations

(4.3) and (4.6), the gradient discrepancy r(z) is the expression h−1(z − Zi) − f (z, θ),
and g ∶ R ×R+ → R+ is in this case the squared-exponential transformation

(u, η) ↦ exp(−u2/2η2) (4.7)

�is approach directly advances the solver in a single leap, without collecting explicit

numerical data as in previous approaches. It is in general non-parametric and requires

either sampling or approximation to be useful—more on which later. Since f (⋅, θ) is
in general non-linear in z, clearly r is non-linear in z too. It follows that the density

in equation (4.6) does not result in a Gaussian measure despite g being given as a

squared-exponential transformation.

�e generalisation to higher-order implicit linear multistep methods of Adams–

Moulton type follows by writing

Zi+1 = Zi + h s−1∑
j=−1

βAM
j,s Fi− j

= Zi + h(βAM
−1,s f (Zi+1, θ) + s−1∑

j=0

βAM
j,s Fi− j)

(4.8)

and then rearranging in the same manner, giving

p(Zi+1 = z∣Z≤i) =
1

K
exp
⎛⎜⎝−

1

2η2
⎛⎝
h−1(z − Zi) −∑s−1

j=0 β
AM
j,s Fi− j

βAM
−1,s

− f (z, θ)⎞⎠
2⎞⎟⎠ (4.9)

By analogy with the distributions p(Zi+1∣Zi , F≤i , ϕ) advancing the explicit probabilis-
tic integrators by one step, we refer to the distributions (4.6) and (4.9) as the ‘stepping’

or ‘step-forward’ distribution.

�emotivation behind this construction is to circumvent the twomain issues outlined

in Section 4.1.1. �e quantity r(z)measures the di�erence between the linear and

non-linear predictors for the value of the derivative at the next time point. �is not

only avoids con�ating these two distinct values, but speci�cally implies that the error
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in the linear predictor—derived from the rearranged Adams–Moulton relation—can

be measured using it.

�e construction also means that the local truncation error can be modelled directly,

without �rst calculating an accurate estimate for the classical Adams–Moulton pre-

dictor ZAM
i+1 and perturbing it, since the value of the exact Adams–Moulton predictor

does not come into the calculation speci�cally.

d Remark 4.1 �e classical Adams–Moulton predictor ZAM
i+1 is a mode of the

distribution (4.9). �is is straightforward to see by noting that r(ZAM
i+1 ) makes the

argument of the exponential zero, which is its maximum possible value. In fact, for

small enough h, it is the unique mode of (4.9). �e latter statement can be justi�ed

as a by-product of the proof of�eorem 4. d

4.2.1 Extension to multidimensional systems

�e extrapolation part of a linear multistep method operates on each component of a

multidimensional problem separately. �us if Z = (Z(1), . . . , Z(d))T , we have for the
s-step Adams–Moulton method Z(v)i+1 = Z(v)i + h∑s−1

j=−1 β
AM
j,s F(v)i− j for each component

v in turn. Of course, this is not true of the transformation Zi+1 ↦ f (Zi+1, θ) ≡ Fi+1,

except in the trivial situation where f is linear in z.

Seen another way, in (3.18) the right-hand distribution in the decomposition is

componentwise-independent while the le�-hand one is not. All previous proba-

bilistic integrators described in this thesis have treated the multidimensional problem

in this way, as a product of one-dimensional relations. Our construction gives us an

opportunity to generalise this.

In our proposal it does notmake sense to consider the system of equations component-

by-component, due to the presence of the non-linear f (z, θ) term, which appears

as an intrinsic part of the stepping distribution p(Zi+1∣Z≤i). �e multidimensional

analogue of (4.9) should take account of this and be de�ned over all d dimensions

together. For vector-valued z, Zk , Fk, we therefore de�ne

p(Zi+1 = z∣Z≤i) =
1

Kh
exp(− 1

2
r(z)TH−1r(z))

r(z) =

h−1(z − Zi) −∑s−1
j=0 β

AM
j,s Fi− j

βAM
−1,s

− f (z, θ)
(4.10)

�e quantity r(z) is now a d × 1 vector of discrepancies in derivative space, and H is

a d × d matrix encoding the solver scale, generalising η.33
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4.2.2 Analysis of well-de�nedness and convergence

�e following theorem proves the well-de�nedness and convergence properties of this

new construction. First we show that the density (4.10) is well-de�ned and proper,

by proving the �niteness and strict positivity of its normalising constant Kh. We

then describe conditions on the h-dependence of the scaling parameter H, such

that an iterative integrator formed by the repeated application of this step-forward

distribution possesses the desired convergence properties. In particular, we bound the

scale of the secondmoment of the distribution with density (4.10), allowing us to write

our density in a similar form to (3.26), enabling us to appeal directly to�eorem 3.

�is theorem presented here is a generalisation to the multidimensional setting of

that appearing in Teymur et al. [Tey18].

Theorem 4 Consider the initial value problem given by (1.9). Assume the vector

�eld f (⋅, θ) is globally Lipschitz with Lipschitz constant L f . For some end time tend > 0

and time-step h > 0 de�ne a grid ti = ih for 0 ≤ i ≤ N ≡ ⌊tend/h⌋. Denote the
solution of (1.9) at time ti by Xi .

Fix s ∈ N ∪ {0}, θ ∈ Rq, and denote by βAM
−1,s the �rst Adams–Moulton coe�cient of

order s. If H = Qh2ρ for some ρ ≥ −1 and positive de�nite matrix Q, independent

of h, having real eigenvalues 0 < q1 ≤ ⋅ ⋅ ⋅ ≤ qd , then for h < (L f βAM
−1,s

√
qd/q1)−1 the

following statements hold:

(i) �e function de�ned in (4.10) is a well-de�ned probability density.

(ii) Let ξhi be the random variable de�ned by Zi+1 − Ẑi+1, with Ẑi+1 the classical

s-step Adams–Moulton predictor for Xi+1. �en for every r ≥ 1, there exists

a constant 0 < Cr < ∞ that does not depend on h, such that for all i ∈ N,
E∥ξhi ∥r ≤ Crh(ρ+1)r.

(iii) If ρ ≥ s+ 1
2 , the probabilistic integrator de�ned by (4.10) converges inmean-square

as h → 0, at the same rate as the classical s-step Adams–Moulton method.

Proof. At iteration i, we de�ne Ẑi+1 to be the output of the s-step Adams–Moulton

integrator. We use the index i + 1 to emphasise that Ẑi+1 is the Adams–Moulton

estimate for Xi+1. (Ẑi+1 can also be thought of as the image Ψh
s (Zi , . . . , Zi−s+1) of the

multidimensional analogue of the numerical �ow-map de�ned in De�nition 3.2.) To

33It is straightforward to see that if a multidimensional problem were treated as a product of one-
dimensional distributions like (4.9), the result would be equivalent to a multivariate expression (4.10)
with the matrix H = Id . Viewed this way, it is apparent how this formulation is more general.
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be precise, for the s–step Adams–Moulton method, Ẑi+1 is the exact solution of the

implicit equation

Ẑi+1 = Zi + h(βAM
−1,s f (Ẑi+1) + s−1∑

j=0

βAM
j,s Fi− j) (4.11)

As described in Section 3.1, the implicit nature of this equation means that, in a

numerical sense, Ẑi+1 is only accessible approximately. Note that in (4.11) and in the

remainder of the proof, we suppress the θ-dependence of f to improve clarity.

Given a probability space (Ω,F ,P), we now de�ne for every i ∈ N the random

variable ξi ∶ Ω → Rd according to

Zi+1 = Ẑi+1 + ξi (4.12)

where Zi+1 is the random variable de�ned by (4.10). Now choose ω ∈ Ω and de�ne

w ∶= ξi(ω). In other words, w is a particular realisation of ξi . Herea�er we will omit

the explicit ω-dependence. It follows from (4.11) and (4.12) that

z = Ẑi+1 +w = Zi + h ⎛⎝βAM
−1,s f (Ẑi+1) + s−1∑

j=0

βAM
j,s Fi− j

⎞⎠ +w (4.13)

By rearranging the terms in (4.13), we have that

1

βAM
−1,s

⎛⎝z − Zi

h
− s−1∑

j=0

βAM
j,s Fi− j

⎞⎠ = f (Ẑi+1) + w

hβAM
−1,s

(4.14)

We now de�ne a norm ∣∣u∣∣Q as
√
uTQ−1u, possible sinceQ is a positive de�nite matrix.

Due to the equivalence of norms, the Lipschitz condition still holds using this norm,

with a di�erent Lipschitz constant LQ , f .

�e new Lipschitz constant LQ , f can be established by noting that for any u ∈ Rd , it

holds that (√1/qd)∣∣u∣∣ ≤ ∣∣u∣∣Q ≤ (√1/q1)∣∣u∣∣, where q1 and qd are respectively the

smallest and largest eigenvalues of Q, both necessarily positive since Q is positive-

de�nite. It then follows that for any u, v ∈ Rd ,

∣∣ f (u) − f (v)∣∣Q ≤

√
1

q1
∣∣ f (u) − f (v)∣∣ ≤√ 1

q1
L f ∣∣u − v∣∣ ≤

√
qd
q1
L f ∣∣u − v∣∣Q

(4.15)

and we can thus take LQ , f =

√
qd/q1 L f .

Returning to (4.14), we subtract f (z) from both sides, take the new Q-norm, and

square, to obtain

RRRRRRRRRRR
RRRRRRRRRRR

1

βAM
−1,s

⎛⎝z − Zi

h
− s−1∑

j=0

βAM
j,s f (Zi− j)⎞⎠ − f (z)RRRRRRRRRRR

RRRRRRRRRRR
2

Q

= ∣∣ f (Ẑi+1) − f (z) + w

hβAM
−1,s

∣∣2
Q

(4.16)
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Noting that H = Q2ρ by assumption, we may thus rewrite (4.10) as

p (Ẑi+1 +w∣Ẑi+1,Q , h) =
1

Kh

exp
⎛⎝− 1

2h2ρ
∣∣ f (Ẑi+1) − f (Ẑi+1 +w) + w

hβAM
−1,s

∣∣2
Q

⎞
⎠
(4.17)

and it follows that the normalising constant is given by

Kh = ∫
Rd

exp
⎛
⎝− 1

2h2ρ
∣∣ f (Ẑi+1) − f (Ẑi+1 +w) + w

hβAM
−1,s

∣∣2
Q

⎞
⎠dw (4.18)

Note that we write Kh to emphasise the fact that the normalising constant depends

on the step-size h.

Wenowbound the function described in (4.17) fromabove and belowbyun-normalised

Gaussian probability densities. By the triangle inequality and the assumption of global

Lipschitz continuity we have the lower bound

∣∣ f (Ẑi+1) − f (Ẑi+1 +w) + w

hβAM
−1,s

∣∣
Q

≥ ∣∣ w

hβAM
−1,s

∣∣
Q

− ∣∣ f (Ẑi+1) − f (Ẑi+1 +w)∣∣Q
≥ ∣∣ w

hβAM
−1,s

∣∣
Q

− LQ , f ∣∣w∣∣Q
= ∣∣w∣∣Q ((hβAM

−1,s)−1 −√qd/q1L f ) (4.19)

where the right-hand side can be seen to be positive since h < (L f βAM
−1,s

√
qd/q1)−1.

Similar reasoning yields the upper bound

∣∣ f (Ẑi+1) − f (Ẑi+1 +w) + w

hβAM
−1,s

∣∣
Q

≤ ∣∣w∣∣Q ((hβAM
−1,s)−1 +√qd/q1L f ) (4.20)

�us for h > 0, there exist constants ch ,Ch > 0 that do not depend on ω such that

ch∣∣w∣∣2Q ≤ ∣∣ f (Ẑi+1) − f (Ẑi+1 +w) + w

hβAM
−1,s

∣∣2
Q

≤ Ch∣∣w∣∣2Q (4.21)

where ch ∶= ((hβAM
−1,s)−1 −√qd/q1L f )2 and Ch ∶= ((hβAM

−1,s)−1 +√qd/q1L f )2.
Equation (4.17) now gives

exp(−ChwTQ−1w

2h2ρ
) ≤ Kh ⋅ p (Ẑi+1 +w∣Ẑi+1,Q , h) ≤ exp(− chwTH−1w

2h2ρ
) (4.22)

Note that the lower and upper bounds do not depend on Ẑi+1. �e interpretation of

(4.22) is that, up to normalisation, the random variable ξi has a Lebesgue density that

lies between the densities of two centred Gaussian random variables.
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Integrating each of the three terms in (4.22) with respect to w and using the formula

for the normalising constant of a Gaussian measure on Rd , we obtain the upper and

lower bounds

Kh ≥
√∣Qh2ρ∣ (2π

Ch

)d/2 =

√∣Q∣ ⎛⎝
√
2πhρ+1βAM

−1,s

1 + L f hβAM
−1,s

√
qd/q1

⎞⎠
d

=∶ KC ,h

Kh ≤
√∣Qh2ρ∣ (2π

ch
)d/2 =

√∣Q∣ ⎛⎝
√
2πhρ+1βAM

−1,s

1 − L f hβAM
−1,s

√
qd/q1

⎞⎠
d

=∶ Kc,h

(4.23)

Note that KC ,h and Kc,h are the normalising constants for the Gaussian random

variables ζC ,h ∼ N(0, h2ρC−1h Q) and ζc,h ∼ N(0, h2ρc−1h Q) respectively. It follows
from ρ > −1 and ∣Q∣ > 0 (Q being positive de�nite) that the upper and lower bounds

in (4.23) are respectively �nite and strictly positive. �is proves statement (i).

To prove (ii), observe that (4.23) yields that, for all 0 < h < (L f βAM
−1,s

√
qd/q1)−1 and

Ẑi+1 ∈ Rd , we have

1 ≤
Kc,h

Kh

≤
Kc,h

KC ,h
= (Ch

ch
)d/2 =

⎛⎝1 + L f hβAM
−1,s

√
qd/q1

1 − L f hβAM
−1,s

√
qd/q1

⎞⎠
d

(4.24)

�e upper bound decreases to 1 as h decreases to zero, since L f , βAM
−1,s , q1, qd and h are

all strictly positive. By the second inequality in (4.22), we have for r ≥ 1

E∣∣Ẑi+1 + ξi ∣∣r = E∣∣Zi+1∣∣r
= ∫

Rd
∣∣z∣∣rp(z∣Ẑi+1,H, h)dz

≤ Kc,hK
−1
h ∫

Rd
∥z∥r exp(− ch(z − Ẑi+1)TH−1(z − Ẑi+1)

2
)dz

= Kc,hK
−1
h E∣∣Ẑi+1 + ζc,h∣∣r (4.25)

Since the preceding inequalities hold for arbitrary Ẑi+1 ∈ Rd , we may set Ẑi+1 = 0 in

(4.17). Using this, and the fact that equation (4.24) implies that limh→0 Kc,hK−1h = 1, it

is su�cient to show that E∣∣ζc,h∣∣r ≤ Crh(ρ+1)r for some Cr > 0 that does not depend

on h.

Now consider the change of variables z ↦ z′ ∶= (chH−1)1/2 z. By the change of

variables formula we have that dz = ∣H∣1/2c−d/2h dz′, and hence

K−1c,h ∫
Rd
∥z∥r exp(− chzTH−1z

2
)dz

=
1√∣H∣ (

2π

ch
)−d/2 ∫

Rd
( 1
ch
)r/2 ∥H1/2z′∥r exp(−z′Tz′

2
)√∣H∣ ( 1

ch
)d/2 dz′
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≤ (2π)−d/2c−r/2h hρr∣∣∣Q1/2∣∣∣r ∫
Rd
∥z′∥r exp(−z′Tz′

2
)dz′

≤ Crh
(ρ+1)r (4.26)

where ∣∣∣ ⋅ ∣∣∣ is the induced matrix norm (satisfying the sub-multiplicative property∣∣∣Ax∣∣∣ ≤ ∣∣∣A∣∣∣ ⋅ ∣∣x∣∣), and Cr does not depend on h. �is proves E∣∣ξhi ∣∣r ≤ Crh(ρ+1)r.

To prove (iii), we set r = 2 and ρ ≥ s + 1
2 in (ii) to obtain E∥ξhi ∥2 ≤ ch(2s+3). Since

s is the number of steps of the Adams–Moulton method of order s + 1, the random
variable ξi satis�es the assumption in the statement of �eorem 3. It then follows

from that result that

max
i

E∣∣Zi − Xi ∣∣2 ≤ Ch2(s+1) (4.27)

4.3 calibration

�eorem 4 tells us that the integrator de�ned by the step-forward distribution (4.10)

de�nes an algorithm with the necessary theoretical properties. In short—for the

implicit method derived from the s-step Adams–Moulton relation, if the scaling

matrix H is chosen to be equal to Qh2s+1 for some constant positive de�nite matrix Q,

the theorem tells us the integrator is correctly convergent in the h → 0 limit. It still

remains to specify the matrix Q, and to justify that no higher exponent for h should

be considered.

�is process of attempting to correctly capture the scale of uncertainty in the un-

derlying numerical method by setting algorithm constants recalls the requirement

to set α in the explicit multistep integrator de�ned by Corollary 3.2. It is necessary

because the asymptotic convergence results in �eorems 2, 3 and 4 tell us nothing

about how to treat their free constants in the �nite h setting in which the algorithms

operate in reality—indeed, as pointed out by Conrad et al. [Con16], the value of the

scale parameter in their method “completely controls the apparent uncertainty in the

solver”. We call the process of setting these constants calibration.

�e issue of calibration of probabilistic ODE solvers is addressed without consensus in

virtually every treatment of this topic discussed in Chapter 2. Two distinct approaches

can be identi�ed. �e �rst are of what we call ‘forward’ type, in which there is an

attempt to directly model the theoretical uncertainty in a solver step and propagate

that through the calculation. �is can be thought of as trying to derive a precise and

explicit generative model for the error in a single step of the classical algorithm, based

on a theoretical analysis of the mathematical structure of the integrator in question.
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Some summary statistic of this error model then needs to be translated into a function

of the scale of the probabilistic integrator, in such a way that the global error arising

a�er repeated application of this process correctly replicates the expected result.

For example, the algorithm suggested in Proposition 3.4 falls into this category. �ere,

the standard deviation of the Gaussian measure representing the uncertainty in the

value of Zi+1 is calibrated to equal the local truncation error of the underlying classical

Adams–Bashforth method. �is is conceptually appealing, though further thought

exposes several questions which are di�cult to resolve.

�e local truncation error clearly represents the scale of error in the some sense,

though for the reasons given in Section 3.1.5 it is unclear how to interpret this single

number when thinking probabilistically. Why equate it with the standard deviation

and not, say, the variance? Furthermore, does it matter that the h-scaling suggested

by Proposition 3.4 is not tight to the bound provided for by�eorem 3? Does the accu-

mulation of multiple independent local errors—asmodelled by Gaussian random vari-

ables of this particular scale—resemble a recognisable notion of global error when con-

sidered at the end of the time interval of interest? �ese types of questions are unavoid-

able in the case that the error model is motivated from �rst principles in this way.

�e second broad category of approaches are those we call ‘backward’ type, where

the uncertainty scale is somehow matched a�er the computation to that suggested

by some external error indicator. In this case, the speci�c model for the stepwise

error is less important, as long as the end result is nevertheless a global uncertainty

estimate which properly quanti�es the lack of knowledge in the �nal solution. In

this approach, the meaning of individual local errors is demoted in importance in

the service of a global error model which is found to be appropriate overall by some

speci�ed criterion.

�is strategy is by de�nition less precise, is almost certain to be highly problem

dependent, and as a result is very likely to require ‘test runs’ to properly implement.

Nevertheless it circumvents the subtle issue, on which much has been written, of how

to tie the scale of local error to that of global error.34

34�e literature being referred to here includes, for example, work on a posteriori global error
estimation [Est00]. In this theory, the so-called ‘stability factor’ of the ODE system—a quantity
analogous to the condition number of a matrix—is estimated by solving a linearised adjoint system.
�is factor is then used in combination with the complete sequence of local error estimates to give
a global error estimate. Several other lines of research attacking the same problem also exist. �e
main point is that the precise connection of local to global error is in general a highly non-trivial
problem—accepting this fact helps justify the proposal to calibrate global error without being too
concerned that individual local errors be fully interpretable.
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�e proposal in Conrad et al. [Con16] falls into this category and we use a modi�ed

version of their idea in our own simulations in Chapter 5. As a consequence, we now

describe this procedure—which we term scale matching—in detail.

4.3.1 Calibration by scale matching – explicit methods

�e core principle of the scale matching approach is to calibrate a probabilistic in-

tegrator by computing a running global error estimate of the underlying classical

method and setting the scaling constant in the stepping distribution of the probabilis-

tic integrator so as to replicate the scale of error suggested by this indicator.

Consider a classical numerical method of order p with numerical �ow map Ψh. One

of the simplest global error indicators compares the output of the same method

applied once with step-size h and—in parallel—twice with step-size h/2 [Pal09, §5.4].
�e di�erence between the two outputs is taken to be an estimate of the error in the

coarser run. Recalling the de�nition of error from Section 3.2, an estimate Êi for the

global error Ei of the classical method at time ti is given by this principle as

Êi = (Ψh ○ i⋯ ○Ψh)(X0) − (Ψh/2 ○ 2i⋯ ○Ψh/2)(X0) (4.28)

Using the notation Zclassic
i = (Ψh○ i⋯○Ψh)(X0), so that Zclassic ≡ Zclassic

0∶N is the complete

discrete trajectory of the classical integrator, Conrad et al. [Con16] form a sequence

of Gaussian measures, one for each step i.35

κclassici = N(Zclassic
i , diag(Ê2

i )) (4.29)

Recall that linearmethods operate on each component of amultidimensional problem

independently—hence the diagonal form of the covariance matrix in (4.29).

�e stepwise perturbations ξi of the corresponding probabilistic method, each inde-

pendent and with variance S ∶= αhr ⋅ Id , are then scaled—by setting the constants

α and r—such that the resulting global error matches the measure κclassici as closely

as possible. �is is achieved by running several repetitions of the integrator with

di�erent sample instantiations ω[1], . . . ,ω[K] ∈ Ω, thereby collecting aMonte Carlo en-

semble of random trajectories Z[1]0∶N , . . . , Z
[K]
0∶N , and then for each step forming another

Gaussian measure

κprobi = N(Eξ(Zi), Varξ(Zi)) (4.30)

Here we have used the ξ subscripts to denote that these are sample statistics calculated

from the Monte Carlo sample Z[1]i (ξ), . . . , Z[K]i (ξ). We remark that Varξ(Zi) will of
course depend on the scaling parameter α and the h-exponent r.

35We have used the slightly loose notation Ê2
i to denote the entry-wise square of the vector Ê i .
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We �rst �x r such that it equals the minimum possible value consistent with the

statement of�eorem 3. For the probabilistic s-step Adams–Bashforth integrator, this

gives r = 2s + 1.36 �e next step is to de�ne some measure of distance between the

two distributions κclassici and κprobi for each time step i. �e product of these distances

over all time steps is then penalised, forming a probability measure over α.

In Conrad et al. [Con16], the measure of distance chosen is Bhattacharyya distance

[Bha46]. For twomultivariate normal distributions κ1 and κ2 with parameters (µ1, Σ1)
and (µ2, Σ2) respectively, this is de�ned as

δ(κ1, κ2) =
1

16
(µ1 − µ2)T(Σ1 + Σ2)(µ1 − µ2) + 1

2
log

det 1
2(Σ1 + Σ2)√

det Σ1 det Σ2

(4.31)

�e product of this expression over all time steps can then be penalised by de�ning a

function B(α) by
B(α) ∝ N∏

i=1

exp(−δ (κclassici , κprobi (α))) (4.32)

(We have speci�cally highlighted the dependence of the empirical measure κprobi on

the scaling parameter α that we are in the process of setting.)

Later, we subtly modify this construction in a number of ways to better suit our

purposes. Firstly, we experiment with eliminating the �rst term of (4.31) to remove

the dependence on the means µi . �is gives a modi�ed expression

δ′(κ1, κ2) =
1

2
log

det 1
2(Σ1 + Σ2)√

det Σ1 det Σ2

(4.33)

We �nd that solely penalising di�erences in variance can give amore stable calibration

procedure, especially in cases where a consistent bias in the algorithm results in the

term containing the means dominating the penalisation. When this occurs, δ(κ1, κ2)
in�ates in order to capture the bias, rather than scaling properly to the variance, and

we �nd that using δ′(κ1, κ2) prevents this.
Secondly, we �nd that the expression (4.32) su�ers from instability when any of the

individual multiplicands δ(κclassici , κprobi ) are close to zero, since their contribution to

the product on the right-hand side becomes extremely large. We �nd this occasionally

occurs in higher-order probabilistic methods when the variances Σ1 and Σ2 are very

small, or sometimes near turning points in f (⋅, θ) where locally—o�en for a single

time ordinate ti only—Êi happens to be very close to zero. We therefore experiment

36In Chapter 5 we provide numerical evidence to support this approach.
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with using the median modi�ed Bhattacharyya distance, rather than the product, to

form an alternative penaliser D′ as a function of α. �is gives

D′(α) ∝median
1≤i≤N

exp(−δ′ (κclassici , κprobi (α))) (4.34)

While a complete Bayesian analysis would require α to be inferred jointly as a full

unknown in the posterior model, Conrad et al. choose instead to take the maximising

argument α∗ of the function D(α) and �x it, in a manner akin to empirical Bayes

[Rob56]. �is greatly simpli�es the implementation, and can be justi�ed on those

grounds. (�e rationale for departing from a fundamentalist Bayesian approach in

decisions such as this was addressed in Section 2.1.1.)

4.3.2 Calibration by scale matching – extension to implicit methods

We now generalise the approach of Conrad et al. in order to calibrate the implicit

probabilistic integrators introduced in this chapter. Recall that for the integrator

derived from the s-step Adams–Moulton method, �eorem 4 tells us that the scaling

matrix H should be chosen to be equal to Qh2s+1 for some constant matrix Q.37 We

have applied the same heuristic here as for the explicit method—that of setting the

exponent of h to be as small as possible while still remaining consistent with the

theoretical bound. Once again, our simulations in Chapter 5 provide strong evidence

in support of this choice.

For the explicit methods, the variance S = Var(Zi+1∣Z≤i , θ , ϕ) of the step-forward
distribution was set by forming an α-scaled diagonal matrix, determined by a scale-

matching procedure that ensures that the integrator outputs a global error scale in

line with expectations.

For the implicit methods, we are not able to relate such a matrix S directly to H

because from the de�nition (4.10) it is clear that H is a scaling matrix for the spread

of the derivative f (Z), whereas the S in the explicit methods measures the spread of

the state Z. In order to transform to the correct space without linearising the ODE,

we apply the multivariate delta method [Oeh92] to give an approximation for the

variance of the transformed random variable, and setH to be equal to the result. �us

H = Var( f (Zi+1)∣Z≤i)
≈ J f (E(Zi+1∣Z≤i))Var(Zi+1∣Z≤i) J f (E(Zi+1∣Z≤i))T
= αh2s+1J f (E(Zi+1∣Z≤i)) J f (E(Zi+1∣Z≤i))T

(4.35)

37Recall the contrasting meanings of s for explicit and implicit Adams methods—see Remark 3.3.
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where J f is the Jacobian of f de�ned for U ∈ Rd by

J f (U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f (1)

∂x(1)
⋯ ∂ f (1)

∂x(d)

⋮ ⋱ ⋮
∂ f (d)

∂x(1)
⋯ ∂ f (d)

∂x(d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRx = U

(4.36)

We assume that the Jacobian can be evaluated in closed form—this requires analytic

�rst derivatives of f component-wise. �e evaluation pointE(Zi+1∣Z≤i , θ , ϕ) required
by the delta method is unknown but we can use an explicit method of equal or higher

order to compute an estimate ZAB
i+1 at negligible cost, and use J f (ZAB

i+1) instead.
With reference to the latter point, we reiterate that we are roughly calibrating the

method so some level of approximation is unavoidable. �is comment applies equally

to the case where the Jacobian is not analytically available and must be estimated

numerically. It is important to note that such approximations do not a�ect the

fundamental asymptotic convergence properties of the algorithm, since they do not

a�ect the h-scaling of the step-forward distribution.

We also note that we are merely matching variances/spread parameters and nowhere

assuming that the distributions in question are Gaussian. Speci�cally, theH suggested

in (4.35) is a statistic representing the spread of the distribution (4.10), but since this

distribution is non-Gaussian, H is not precisely its variance.

�e transformation having been made and H constructed as in equation (4.35), the

overall scaling constant α can then be set in the same way as in the explicit approach,

via scale-matching the global error indicator to the empirical measure output by the

probabilistic integrator.

�is construction has the bene�cial consequence of giving a non-trivial cross corre-

lation structure to the error calibration matrix, allowing a richer description of the

error in multidimensional problems, something absent from previous approaches.

Furthermore, it derives this additional information via direct feedback from the ODE

beyond the current time ti , which we have claimed is a desirable attribute.

d Remark 4.2 �e idea presented in this section bears some similarity to the

original concept in Skilling [Ski91], in which a scalar ‘sti�ness constant’ is used to

transform the uncertainty scale from solution space to derivative space, in a similar

way to how we have employed the Jacobian J f . d
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d Remark 4.3 �roughout the previous two sections we have assumed that the

matrix S = Var(Zi+1∣Z≤i , θ , ϕ) is proportional to the identity matrix Id . �is is in

accordance with the approach of Conrad et al. [Con16]. Of course, we could seek to

calibrate a more general positive de�nite matrix Q.

We experimented extensively with this idea, including setting Q proportional to local

error indicators (such as the Milne Device [But08, §245]), the global error scale at

end of the interval (to allow for multi-scale errors across dimensions), or using ideas

from the theory of a posteriori error estimation [Est95; Cao04] (which combines the

two). In all cases, we found at best minor improvements in performance but large

increases in computational cost and programming complexity.

�e �rst of these—using local error estimates to locally adjust the scale of the per-

turbations at each time-step—is intuitive, though it exhibits a problematic lack of

robustness at higher orders, since local errors are o�en close to zero in intervals of

the problem where f (⋅, θ) happens to be locally close to polynomial. �e second—

calibrating di�erent α for each dimension of a problem—is a promising approach. It

may be that in a problem with wildly di�ering scales in di�erent components, e�ort

should be refocused on the use of type ofmulti-scale calibration. Further investigation

of this topic is one of the avenues of future research we suggest in Section 6.2.2. d

4.4 implementation

�e stepping distribution de�ned by the density (4.10) is non-parametric—indeed this

was highlighted as one of its strengths, since it incorporates direct feedback from the

system dynamics in the interval [ti , ti+1]. However, the fact that it is not of a standard
form means that the question of how to evaluate it—or sample from it—is not trivial.

In this section we cover several possible approaches to this issue, in anticipation of

our simulations in the next chapter.

4.4.1 Forward simulation

�e core principle behind randomised IVP solvers—�rst described in Section 2.2—is

to run repeated instantiations of the solver with di�erent random seeds ω ∈ Ω in

order to generate an empirical measure from the ensemble of trajectories, re�ecting

the uncertainty in the underlying integrator. �is requires us to sample from the

step-forward measure at each time step. In the case of a non-parametric distribution,

no exact way exists to do this. As explained in Section 1.2.2, the only viable alternative

is to simulate from the distribution using a stochastic approximation method such as

Monte Carlo.
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Implementing such an algorithm-within-an-algorithm allows us to draw a sample

from the distribution (4.10). Nevertheless, there is clearly a signi�cant computational

penalty associated with this approach, particularly since any sampling procedure

needs to occur at every time-step i and, furthermore, is not paralellisable due to the

inherently sequential nature of an iterative IVP integrator.

�ere are several ways of performing this sampling. MCMC—using Metropolis-

Hastings [Met53; Has70] or some extension thereof using additional derivative infor-

mation [Rob02; Gir11]—is likely to require careful tuning, adaptation [Haa01] and

close diagnostic attention to ensure the Markov chain is ergodic and the samples

drawn are not biased. Markov chain-based algorithms such as these can be very poor

samplers if care is not taken to ensure they are properly set-up.

An alternative approach is to perform rejection sampling [Von51] using the bound-

ing Gaussian density (4.22) which arises in the proof of part (i) of�eorem 4. �is

approach gives an explicit covering distribution for the rejection sampler, avoiding

algorithm tuning issues, and moreover has the potential to output independent sam-

ples. However, the dependence of the density bound in (4.22) on the global Lipschitz

constant L f means that the ‘covering constant’ [Liu01, §2.2] of the rejection sampler

may be very large. �is will certainly be the case if L f is itself large, and probably

also if it is unknown and needs to be (conservatively) estimated. In such a situation

the rejection sampler, while theoretically correct, may turn out to be an extremely

ine�cient way of generating samples.

Instead, we experiment with an approach based on the pre-conditioned Crank–

Nicolson (pCN) algorithm [Cot13]. �e nature of the distributions to be sampled

from—low-dimensional and ‘close’ to Gaussian—allows us to employ a trick which

greatly increases the sampling e�ciency of the Markov chain. In order to do this, a

close Gaussian approximation to the target density (4.10) must be found. We outline

a method for constructing such an approximation in the next section; for this reason,

we defer the detailed discussion of this method to Section 4.4.3.

4.4.2 Gaussianisation

While sampling-basedmethods allow for the algorithm to proceed using the exact non-

parametric step-forward distribution (4.10)—at least asymptotically, since there will

inevitably be stochastic errors introduced by any �nite-lengthMonteCarlo procedure—

the only way to completely avoid the additional cost penalty is by reverting to distri-

butions of standard form, from which samples can easily be drawn. �e most straight-

forward approach is to approximate (4.10) by a Gaussian distribution—depending on

how this approximation is performed, the desideratum of maintaining information

feedback from the future dynamics of the target function can be maintained.
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Consider a Taylor expansion for f (z, θ), truncated a�er the �rst-order term:

f (z, θ) = f (Zi , θ) + f ′(Zi , θ)(z − Zi) + higher order terms

≈ f (Zi , θ) + f ′(Zi , θ)(z − Zi) (4.37)

By Taylor’s theorem for vector-valued functions, f ′(Zi , θ) is the total derivative of the
vector function f with respect to vector x and so is the Jacobian J f (Zi) given by (4.36).

In the same way as during the calibration process, we assume that the Jacobian can

be evaluated in closed form, which requires analytic �rst derivatives of f component-

wise. (As there, it may also be that a numerical approximation to the Jacobian can act

as a feasible alternative.) �e evaluation point Zi is, of course, the current position of

the sampler and hence known. We then have from equation (4.10)

r(z) ≈ h−1(z − Zi) −∑s−1
j=0 β

AM
j,s Fi− j

βAM
−1,s

− f (Zi , θ) − J f (Zi)(z − Zi)
= Γ(z −w)
=∶ r̃(z)

(4.38)

where we have de�ned the matrix Γ ∈ Rd×d and vector w ∈ Rd by

Γ = (hβAM
−1,s)−1Id − J f (Zi)

w = Zi + Γ−1 ⎛⎝
s−2∑
j=0

βAM
j,s

βAM
−1,s

Fi− j + f (Zi)⎞⎠
(4.39)

�e approximation r̃(z) is linear in z and hence yields a non-centred Gaussian when

substituted for r(z) and transformed into a probabilitymeasure via themodi�ed trans-

formation g mapping (u,H) ↦ exp(− 1
2u

TH−1u) as in (4.10). Some straightforward

algebra gives the moments of this approximating Gaussian measure as

papprox(Zi+1 = z∣Z≤i) = N(z;w , Γ−1HΓ−T) (4.40)

We note that this procedure is merely to facilitate straightforward sampling—though

r̃(z) is linear in z, the inclusion of the �rst additional term from the Taylor expansion

means that information about the non-linearity (in z) of f (⋅, θ) is still incorporated
to second order, and the generated solution Z is not jointly Gaussian across time

steps i. Furthermore, since Γ−1 is order 1 in h, this approximation does not impact

the global convergence of the integrator, as long as H is set in accordance with the

principles described in Section 4.3.

Another signi�cant bene�t of this approach is that it allows a simulation to be run

having pre-sampled a random seed ω ∈ Ω. �e sampled ω[k] generates the complete
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sequence of step-wise perturbations ξ(ω[k]) ≡ ξ[k] in advance of the integration.

�is is indispensable in the inverse problem context, where an MCMC algorithm

performing posterior inference over the model parameters θ—in the setup described

in Section 1.4—will mix much better if the sampled sequence ξ[k] is reused from step

to step. We will provide signi�cant further detail on this issue in Chapter 5.

d Remark 4.4 �is approximation (4.37) is similar to the method of solving

implicit IVP integrators by linearising them [Pre07, §17.5]. In this way, it can be

seen that the underlying method here has e�ectively been turned into a probabilistic

version of a so-called semi-implicit multistep method of the form

Zi+1 = Zi + h ⎡⎢⎢⎢⎢⎣(
1

βAM
−1,s

− hJ f (Zi))
−1 ⎛
⎝ f (Zi) + s−2∑

j=0

βAM
j,s Fi− j

⎞
⎠
⎤⎥⎥⎥⎥⎦ (4.41)

Another name for this family of methods is the Rosenbrock family[Hai10, §4.7; Pre07,

§17.5.1], though most expositions concentrate on the linearisation of multi-stage

Runge–Kutta methods rather than multistep methods. d

d Remark 4.5 To avoid confusion, we point out the di�erence between the ap-

proximating Gaussian (4.40) just de�ned and the bounding Gaussian (4.22) which

we noted in Section 4.4.1 could be used to construct a rejection sampler. �e former

is correctly normalised and is thus a true density; furthermore there are no guaran-

tees that it bounds (or ‘covers’) the stepping distribution. Indeed, it cannot do so

unless the two distributions are identically equal. �e latter is a scaled version of a

Gaussian density and is thus un-normalised. As a result, it cannot be assumed to be a

good approximation of the density of the stepping distribution unless its normalising

constant is known—and it may be a poor approximation regardless. d

4.4.3 Pre-conditioned Crank–Nicolson MCMC

In this section we introduce an MCMC algorithm which is a modi�cation of the

standard random walk Metropolis–Hastings algorithm, and that has the key property

of high e�ciency when the distribution being targeted is close to Gaussian. In our

case, we are able to exploit the Gaussian approximation (4.40) to construct an e�cient

MCMC algorithm which samples exactly from the step-forward distribution (4.10),

without the requirement to substitute the Gaussian approximation itself.

�e underlying concept—in the context of in�nite-dimensional samplers—was intro-

duced by Beskos et al. [Bes08] under a di�erent name, then expanded and formalised

by Cotter et al. [Cot13] who labelled it the pre-conditioned Crank–Nicolson algo-

rithm. Several relevant theoretical results are given by Pillai et al. [Pil11]. A variant,
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focusing on �nite-dimensional distributions, was considered in the author’s Masters

thesis [Tey14]. We describe and implement the latter version here.

�e construction of the algorithm takes as its starting point the d-dimensional stochas-

tic di�erential equation

dU(t) = −U(t)dt +√2M dBt (4.42)

withU(t) a stochastic process,M a positive semide�nite d×dmatrix andBt a standard

Brownian motion. �is de�nes the so-called the Ornstein–Uhlenbeck process [Kar91,

§5.6A] and has stationary solution U(t) ∼ N(0,M). Discretisation of this equation

with step-size h > 0 is achieved using the Crank–Nicolson method [Cot13], resulting

in an iterative relation

Ui+1 −Ui = −hUi +Ui+1

2
+√2h ⋅ ζi (4.43)

where ζi
iid
∼ N(0,M). Rearranging this expression gives

Ui+1 =
1 − h/2
1 + h/2 Ui +

√
2h

1 + h/2 ⋅ ζi
=

√
1 − γ2Ui + γ ⋅ ζi

(4.44)

where we have de�ned γ =

√
2h(1 + h/2)−1. �is relation de�nes a Markov chain. As

long as it is possible to generate samples ζi fromN(0,M), successive states Ui will

be exact samples from the stationary distributionN(0,M).
�is is clearly circular and not useful in itself, but the key insight is that the intro-

duction of a Metropolis step allows any distribution to be sampled from exactly, and

if that distribution is close to Gaussian then the N(0,M)-stationarity of the pCN
algorithm means that proposals can have a very high probability of being accepted.

Consider now the target distribution p(Zi+1∣Z≤i) from (4.10). Calculating a close

Gaussian approximation papprox(Zi+1∣Z≤i) to it as in (4.40), and o�setting them both

by the mean w of the approximation, allows us to write the trivial equality

p(Zi+1 −w∣Z≤i) =

p(Zi+1 −w∣Z≤i)
papprox(Zi+1 −w∣Z≤i) papprox(Zi+1 −w∣Z≤i) (4.45)

�e pCN algorithm draws samples from the centred Gaussian papprox(Zi+1−w∣Z≤i) ≡N(0, Γ−1HΓ−T) and outputs samples from the distribution p(Zi+1 − w∣Z≤i) by ex-
ploiting this relation. �ese samples can then be trivially transformed back to the

target distribution p(Zi+1∣Z≤i) by adding w to each one individually.
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pCN algorithm for sampling p(Zi+1∣Z≤i)
1 input Mean w and variance Λ of Gaussian

approximationN(w , Λ) to p(Zi+1∣Z≤i)
2 input U [1] (w is a good choice)
3 input γ ∈ (0, 1]
4 for 1 ≤ k ≤ K
5 ξ[k] ∼ N (0, Λ)
6 U∗ ←√1 − γ2 (U [k] −w) +w + γξ[k]
7 α[k] ←min(1, p(U∗∣Z≤i)N (U [k];w , Λ)

p(U [k]∣Z≤i)N (U∗;w , Λ))
8 r[k] ∼ U[0, 1]
9 if r[k] < a[k]

10 U [k+1] ← U∗

11 else

12 U [k+1] ← U [k]

13 end

14 k ← k + 1
15 end

16 output U [2], . . . ,U [K]

Algorithm 1: Pseudo-code for the modi�ed pre-conditioned Crank–Nicholson sampler
for generating K samples from the step-forward distribution (4.10) of the probabilistic
Adams–Moulton integrator. �e parameters w and Λ of the required Gaussian approxi-
mation are calculated using the procedure in Section 4.4.2 and given by equation (4.40).

Roughly speaking, if papprox is close to p, then p/papprox will be close to 1. �is fact,

combined with the algorithm’s stationarity with respect to papprox, means that almost

all proposed samples are accepted. Furthermore for values of γ close to 1, successive

samples will be only very weakly dependent.�ese featuresmean the algorithm results

in a very e�cient MCMC sampler for this class of target distributions.38 Pseudo-code

describing the implementation of the algorithm is given in Algorithm 1.

�e parameter γ ∈ (0, 1] controls the extent to which the proposal distribution on

line 6 makes Algorithm 1 approximate a Gaussian independence sampler. On one

extreme, we see that as γ → 0, the Markov chain tends to a deterministic sequence

with each successive sample equal to its antecedent. �e opposite extreme, γ → 1,

diminishes the in�uence of the current state such that at the limit γ = 1 proposals U∗

are indeed independently drawn from the Gaussian distributionN (0, Λ).
38Cotter et al. [Cot13, §4.2] refer to the pCN algorithm as a “natural generalisation of random

walks to the setting where the target measure is de�ned via density with respect to a Gaussian”. Under
this view, the ratio p/papprox can be thought of as the de facto target measure.
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In our simulations, we �nd that values of γ of 0.95 or even larger still give very good

performance. �is indicates that the step-forward distributions we consider are close

enough to Gaussian that the pCN algorithm can be e�ectively operated at extremely

high e�ciency.

We give some indicative plots of the e�ect of varying γ in �gure 4.2. �ese data were

generated during several runs of the probabilistic implicit Euler integrator applied

to the FitzHugh–Nagumo system to be properly introduced in Section 5.1.1. �e

step-size is h = 0.1 and the data are drawn at the point when the integrator has

reached t60 = 6.0 and is in the process of advancing to t61 = 6.1. For each of several

values of γ, 1000 samples were generated from the step-forward distribution based

on the backward Euler method (4.6) using the pCN algorithm shown in Algorithm 1.

�e results are tabulated below �gure 4.2. �e second column gives the sample ac-

ceptance rate, while the third column shows the equivalent number of independent

samples generated per iteration, as measured by dividing the e�ective sample size by

the total number of samples collected.39 �e latter statistic is a measure of the informa-

tion content of the Markov chain, in the sense that it summarises the autocorrelation

sequence by a number between 0 and 1, where a sequence of independent samples

would return a value of 1 and a sequence of fully correlated samples—generated by

a deterministic transition kernel, for example—would return 0. �e output shown

relates to the �rst state dimension x(1) of the two-dimensional test problem, though

results for x(2) are similar.

�ese results support the suggestion that γ = 0.95 is a reasonable value to choose for

our simulations, under the assumption that broadly similar behaviour would result

across iterations i of the complete integration interval. �e samplers with the smallest

values of γ exhibit relatively high autocorrelation, drastically increasing the number

of samples required in order to generate a single one which is uncorrelated to the

starting value. �ose with large γ su�er from relatively poor acceptance rates which

itself negatively a�ects the sample autocorrelation, since rejected samples are fully

correlated with their antecedent.

39�e e�ective sample size is calculated using the initial convex sequence estimator of Geyer
[Gey92]. �e formula for the equivalent number of independent samples per iteration is given by
EIS = (1+ 2∑m

j=1 s j)−1, where the s j are the autocorrelation values at lag j, andm ≤∞ is a truncation
point determined in such a way as to capture as much of the signal as possible from the autocorrelation
sequence, yet exclude the noise at high lags.
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0.9 61.6 0.168
0.95 59.6 0.229
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1 37.6 0.111

Figure 4.2: Autocorrelation plots for lags 0–10 for the pCN sampler applied to the step-
forward distribution (4.6) at the 60th iteration of a probabilistic backward Euler integrator
solving the FitzHugh–Nagumo system (de�ned in Section 5.1.1) with step-size h =0.1.
Di�erent values of γ are compared. �e table gives the acceptance rate and equivalent
number of independent samples calculated from samples of the �rst state variable x(1).
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5
SIMULATION STUDIES

5.1 introduction

In this chapter we explore the application of the methods introduced in this thesis

to two simple ODE models, and discuss the bene�ts and shortcomings suggested

by the results. Firstly we introduce these test models, then undertake the integrator

calibration process described in Section 4.3, and �nally apply our methods in the

context of Bayesian parameter estimation.

5.1.1 FitzHugh–Nagumo model

For our �rst running example we choose a well-known dynamical model of two

variables, the FitzHugh–Nagumo model. �is model was proposed by FitzHugh

[Fit61] andNagumo et al. [Nag62] as a two-dimensional simpli�cation of theHodgkin–

Huxley model [Hod52], which was itself introduced to model the �ringmechanism of

neurons in squid. Viewed a di�erent way, the FitzHugh–Nagumo model can be seen

as a generalisation of the well-known Van der Pol oscillator. It has been extensively

studied both due to its important scienti�c interpretation but also for its interesting

mathematical behaviour. Extensive details are given in the book-length study by

Rocsoreanu et al. [Roc12].

We consider the following form of the model, which has been treated in several previ-

ous papers in the ODE parameter estimation and probabilistic numerics literature

[Ram07; Cal09; Cam12; Jen12; Con16; Sch18]:
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Figure 5.1: High-accuracy solution of the FitzHugh–Nagumo initial value
problem de�ned by (5.1) with parameters θ = (0.2, 0.2, 3) and initial value
X0 = (−1, 1)T for the range for 0 ≤ t ≤ 20. �e top two panes show the solution
as a time series while the bottom pane shows the trajectory in phase space.
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dV

dt
= c (V − V 3

3
+ R)

dR

dt
= − 1

c
(V − a + bR) (5.1)

�e two state variables V and R represent, respectively, the electrical potential across

the cell membrane, and an auxiliary variable depending on the refractory period a�er

the neuron’s �ring. �e parameters a and b are related to the number of channels of

the cell membrane which are opened to the Na+ and K+ ions [Roc12] and c adjusts

the scale between the two variables. �e original model in Fitzhugh [Fit61] restricts

these parameters to the ranges a ≥ 0, 0 ≤ b < 1 and c > 0. Stable cyclical behaviour

occurs for parameter values additionally satisfying ∣a∣ ≤ 0.8, ∣b∣ ≤ 0.8 and c < 8

[Cam07, §1.2].

In our studywe consider thismodel in an abstractway and as such to be consistentwith

our earlier notation we collect the state variables as x ≡ (V , R)T and the parameters

as θ ≡ (a, b, c). We consider the parameter choice θ = (0.2, 0.2, 3) and initial value

X0 = (−1, 1)T . �ese choices result in the dynamics shown in �gure 5.1.

5.1.2 Brusselator model

Our second example is the Brusselator system, introduced by Lefever &Nicolis [Lef71].

�is models the autocatalytic reaction of a mix of chemical substances which, with

certain parameter choices, results in the concentrations of the individual molecules

exhibiting periodicity. �e equations governing the dynamics follow directly from

the chemical law of mass action, though once again we consider the system abstractly.

Its behaviour has been studied in, for example, Hairer et al. [Hai08, §I.16] and it was

also used as an example—albeit with di�erent parameter values to here—in a recent

probabilistic numerics paper [Sch18]. �e de�ning equations are:

dx(1)

dt
= θ(1) + (x(1))2x(2) − (θ(2) + 1)x(1)

dx(2)

dt
= θ(2)x(1) − (x(1))2x(2) (5.2)

�is time we have written the equations directly in our standard notation. �e system

only exhibits ‘interesting’ dynamics40 if θ(2) > (θ(1))2 + 1. We therefore take the

parameter to be θ = (1.4, 3) and the initial value to be X0 = (1, 2)T . A reference

solution for these values is shown in �gure 5.2.

40Technically-speaking, what this means is that the steady non-equilibrium state of the system is
unstable with respect to space-independent in�nitesimal perturbations [Lef71, §2].
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Figure 5.2: High-accuracy solution of the Brusselator initial value problem
de�ned by (5.2) with parameters θ = (1.4, 3) and initial value X0 = (1, 2)T for
the range for 0 ≤ t ≤ 10. �e top two panes show the solution as a time series
while the bottom pane shows the trajectory in phase space.
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5.2 calibration

In this section we apply the calibration method suggested in Section 4.3 to �nd the

scaling constants α which we will use in subsequent simulations. In Section 5.3, where

we �rst consider the output of our probabilistic integrators, we further verify this

approach to calibration by undertaking a simple goodness-of-�t check. In passing,

we note that our results for the explicit �rst-order method—equivalent to the forward

Euler method—can be compared to those given in the paper by Conrad et al. [Con16]

and are similar, as expected.

Figure 5.3 plots on the vertical axis the logarithmic function values logB′(α) corre-
sponding to values of α shown on the horizontal axis, for logB′(α) as in (4.34). �e

evaluation points are {1, 2, 5} × 10m for m = −4,−3,−2,−1, 0, 1, 2. Since we employ

an empirical Bayes approach, and are therefore only interested in the maximum

probability value α∗ = argmax
α∈R+

B′(α), such a grid-search approach is adequate.41

�e psuedo-density values are calculated by running 100 repetitions of each proba-

bilistic integrator and forming sample statistics Eξ(Zi) and Varξ(Zi) at each time

ti as described in Section 4.3.1. For the implicit methods (bottom row), the pCN

method introduced in Section 4.4.3 is employed to sample from the step-forward

distribution at each step, with the parameter γ set to 0.95 and the ��h of �ve samples

taken. As suggested by �gure 4.2, the ��h sample can be expected to exhibit very low

correlation with the starting position of the simulation.

Each calculation is repeated with a minimum of three di�erent step-sizes h—usually

h = 0.01, 0.05, 0.1, though in some of the higher-ordermethods we found that h = 0.1

caused instability so in these cases have instead plotted the results of simulations

with h = 0.005. �e thin lines connect points calculated using the same h and are

intended to indicate the e�ect of varying α while keeping h constant.

�e red data comes from simulations integrating the FitzHugh–Nagumo model while

the green is from those integrating the Brusselator. Each model was run to �nal

time tend = 10. �e top row of four panels gives the results for the probabilistic

Adams–Bashforth method introduced in Chapter 3 for orders 1–4 (number of steps s

= 1–4). �e bottom row gives the same for the probabilistic Adams–Moulton method

introduced in Chapter 4, also for orders 1–4 (in this case, number of steps s = 0–3).

�e simulations all use the modi�ed Bhattacharyya distance δ′(⋅, ⋅) de�ned in (4.33)

and modi�ed penalising transformation B′(α) in (4.34). Using the unmodi�ed δ(⋅, ⋅)
results in a breakdown of the calibration process for the higher-order integrators for

41For a full Bayesian analysis, particularly if these pseudo-densities were thought to be multi-modal,
an MCMC simulation would need to be run to sample from B′(α).
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FitzHugh–Nagumo Brusselator

Method α∗ Method α∗ Method α∗ Method α∗

AB1 0.2 AM0 0.2 AB1 0.2 AM0 0.2
AB2 0.1 AM1 0.05 AB2 1 AM1 0.1
AB3 0.2 AM2 0.05 AB3 0.5 AM2 0.02
AB4 100 AM3 5 AB4 1 AM3 0.02

Table 5.1: Approximate values α∗ maximising the function B′(α) de�ned in
equation (4.34) for the FitzHugh–Nagumo and Brusselator systems. �ese values
were read o� visually from the plots in �gure 5.3 and are the chosen from the
grid of simulated values of α (i.e. with no attempt made to interpolate the grid).

the reasons described in Section 4.3.1—namely the situation where a consistent bias

term dominates the scale of the variance, resulting in a failure to correctly capture the

latter. Similarly we �nd the unmodi�ed penaliser B(α) gives less consistent results
as the calculation of sample statistics is skewed by the presence of near-zero terms

occasionally arising at particular time-points—usually near turning points of the

underlying ODE function f (⋅, θ).
We can reason from �gure 5.3 in two ways. Firstly, it provides overwhelming nu-

merical evidence that the h-scaling suggested in Section 4.3 is the correct one. �is

conclusion can be justi�ed by noting that the ‘curves’ for di�erent values of h are

closely superimposed in all cases—were the h-scaling incorrect, we would not expect

this to be the case. In other words B′(α), de�ned in this way, is independent of h.

With this observation, we can justify the heuristic of choosing the integrators’ h-

dependence (corresponding to the h-scaling of ξ in the statement of �eorem 3,

and of H in the statement of�eorem 4) to be equal to the bound permitted by the

subsequent convergence analyses. For the same reason, we can state with con�dence

the structural de�ciency of the integrator proposed in Proposition 3.4, in which the

stepwise perturbations ξ are one order of h greater than this bound.

Secondly, we can read o� the approximate maximising values α∗ for each method and

for each model. �ese are tabulated in table 5.1. Since we are roughly calibrating the

integrators, we choose themaximumprobability α amongst those in the set of points at

which we evaluated B′(α) (which are approximately equally-spaced logarithmically)

rather than attempting to interpolate these values. We will use these values in our

subsequent simulations. It is immediately apparent that the calibration is highly

problem dependent, particularly for the higher-order integrators. Unfortunately, this

suggests that this lengthy calibration process is likely to be required each time a new

model is under investigation.
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It is impossible to infer from the results of calibrating these two models alone whether

general rules exist for the distribution of α over awide range ofmodel types, depending

solely on characteristics of the underlying method, such as convergence order or error

constant. �e emergence of any such higher-level patternwould be of supreme interest.

�is would be an intriguing direction for future research—this and other related ideas

are brie�y discussed in Section 6.2.2.

5.3 integration of the forward model

Having calibrated the probabilistic integrators on the two chosen test problems,

we now present some output exemplars of these algorithms, aiming to highlight

some of their most appealing features, but also some possible shortcomings. In

this section we mainly present qualitative results, aiming to give an overview of the

possibilities opened up by these algorithms. We also suggest one type of goodness-

of-�t check that could be performed to verify the integrator output. In Section 5.4 ,

where we consider parameter inference in the inverse problem, we will consider more

quantitative aspects.

5.3.1 First-order methods

Figures 5.4 and 5.5 show plots of the FitzHugh–Nagumo system solved in the range

t ∈ [0, 10] using respectively the probabilistic �rst-order explicit (forward Euler) and

�rst-order implicit (backward Euler) integrators. K = 100 repetitions were made with

a step-size of h = 0.1. Each point represents one value Z[k]i on the discrete path of

one of the K instantiations of the integrator. �e subscript i indexes time, whereas

the bracketed superscript k indexes the Monte Carlo repetitions.

We consciously do not plot lines connecting these dots, since in the randomised

integrator paradigm the individual trajectories Z[k]0∶N are not claimed to represent a

sample from some underlying functional measure, in the manner of Chkrebtii et al.

[Chk16] or Schober et al. [Sch18]. Instead, the empirical distribution of the ensemble

of K values Z[1∶K]i is taken to represent the uncertainty in the value of the true solution

Xi ≡ x(ti), corresponding to the same time ti .

�e three panes in each plot are intended to highlight the e�ect of calibration on

these integrators. In both cases, the centre plot is correctly calibrated, meaning it

shows the result of running the integrator with the scaling parameter α set equal to

its maximum probability value α∗ shown in table 5.1. For the sake of comparison,

the top pane shows the same simulation but this time run with α = α∗/10, and in

the bottom pane α = 10α∗. �e dashed black line describes the trajectory Zclassic
0∶N of
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the classical method, while the solid black line gives an accurate reference solution

calculated using a high-order Runge–Kutta solver calculated on a �ne mesh.

In both cases, it is visually apparent that the centre plot captures the scale of uncertainty

more appropriately than the top or bottom plots. �e trajectory of the reference

solution remainswithin the range of the ensemble of points throughout the integration

interval, unlike in the top plot, and yet this range does not obviously overstate the

uncertainty as is the case in both bottom plots. Obviously, this is merely a qualitative

assessment of performance, but nevertheless forms a useful ‘sanity check’ on the

output of the probabilistic algorithms.

For a somewhatmore quantitative assessment, we consider the ‘residuals’ of the sample

path—interpreted in the context of calibration as the (signed) di�erence between

the predicted variance estimates Ê2
i and the empirical variance estimates Varξ(Zi).

�ese quantities were introduced and de�ned in equations (4.29) and (4.30). Since the

dynamics of the ODE are complex and time-varying, yet the calibration constant α is

set in advance and �xed, discrepancies are to be expected between the two estimates

for variance when they are considered pointwise.

�e signed di�erence between these two quantities can be expected to centre around

zero if the calibration is successful, and will exhibit skew either above or below zero if

the pointwise empirical variances are systematically of a di�erent magnitude to the

corresponding predictions from the classical error indicators.

Since evidently the variance of Zi increases with i, these residuals form an intrinsically

heteroscedastic sequence. It is therefore appropriate to scale each by an estimate for

its standard deviation, to enable direct comparison. For this purpose we simply use

the standard deviation ∣Êi ∣ given by the classical error indicator (4.28). We thus have,

at each time ti and for components p ∈ {1, 2}the residual quantity
r
(p)
i =

Varξ(Z(p)i ) − (Ê(p)i )2∣Ê(p)i ∣ (5.3)

In �gure 5.6, we plot histograms of ri = {r(p)i }p∈{1,2} corresponding to each of the

simulations displayed in �gures 5.4 and 5.5. �ese show that, for α = 0.02, the

residuals ri are consistently negative, indicating that this value of α results in output

variance smaller systematically than expected, while the opposite is true of the case

α = 2. �ese both indicate poor model �t. �e case α = 0.2, corresponding to the

calibrated value α∗, the residuals are broadly (though not completely) centred.

We note that these histograms represent very rough diagnostic test of model �t and

serve as a ‘sanity check’ on the calibration procedure described in Section 4.3. We

further remark that, in the middle panes of �gure 5.6, it appears that the residuals for
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Histograms of scaled variance residuals for the FitzHugh−Nagumo system

Figure 5.6: Histograms of residuals r i , each representing the di�erence between
classically-predicted and empirically-calculated values of the variance Z i of the
probabilistic integrator being employed. �e histograms correspond to the three
plots in �gure 5.4 (le�-hand panes) and the three plots in �gure 5.5 (right-hand
panes). �e residuals are scaled to remove the intrinsic heteroscedasticity present
over the range of t—the expression for the scaled residuals is given in equation 5.3.
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the backward Euler integrator are more symmetrically distributed around zero than

for the forward Euler integrator. �is could be encouraging evidence of improved

model �t arising from the fundamental di�erence in structure of the two integrators,

though caution is required in drawing such a conclusion on the basis of a single

simulation.

5.3.2 Higher-order methods

We now consider the result of implementing calibrated second- and higher-order

probabilistic multistep methods. For these simulations we use the second of our test

examples, the Brusselator, andwe extend the time interval to t ∈ [0, 50] to highlight the
longer-time performance of the algorithms. We plot the results of several simulations

in �gures 5.7–5.14.

In these plots, rather than plotting each trajectory as a sequence of dots, we have

summarised the integrator output by calculating the sample mean and sample stan-

dard deviations of the Monte Carlo ensemble Z[1]i , . . . , Z[K]i for each time index i, and

plotting the 1σ , 2σ and 3σ intervals as shaded bands. In each case, the black dots give

the trajectory Zclassic
0∶N of the classical classical integrator, while the thick solid black

line gives a reference solution calculated using a fourth-order Runge–Kutta solver

with step-size h = 0.005.

Figure 5.7 highlights how at the chosen step-size, the classical forward Euler method

accumulates signi�cant error well before the end of the interval of interest. From the

point at which this occurs forward, there is very little relationship between the paths

of the black dots and the solid black lines, demonstrating the manifest inadequacy of

this method when applied to this problem.

�e probabilistic method instead outputs a distribution from which credible intervals

can be calculated—it can be easily veri�ed that the true solution is contained within

the 2σ band throughout the interval of integration. In this way, the distribution

reported for x(t) at, say, t = 50 would place non-negligible measure on an interval

containing the true solution. Once again, this is not a quantitative conclusion, but

nonetheless this feature is the minimum we should expect of probabilistic integrators.

�e same principle is repeated in �gures 5.8 and 5.9 for 2-step and 3-step probabilistic

Adams–Bashforth methods respectively. In the latter case, the high accuracy of the

third-order method means that even over this long interval, the uncertainty in the

solution is almost invisible. As a result, we plot in �gure 5.10 the same simulation

but run at double the step-size, h = 0.2. �is once again shows the satisfactory

performance of the probabilistic method, though it is interesting to note that the

artefacts visible around t = 3—a by-product of the quadratic interpolants involved in
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third-order Adams-type methods—are not captured by the probabilistic method. Our

instinct is that a fundamentally di�erent approach would be required if, in designing

a probabilistic algorithm, it was felt essential that these local error phenomena also

be accounted for.

Figure 5.11 plots the output of the probabilistic backward Euler method applied to the

same problem. It is immediately apparent that, while the true solution is once again

contained within the 2σ band as in �gure 5.7, the interpretation this time must be

di�erent. In this case, the path of the dots representing the solution using the classical

backward Euler method is so obviously wrong that, in e�ect, any estimator based on it

would be completely uninformative of the true solution. A�er approximately t = 20,

the trajectory remains in what appears to be a stable, static equilibrium, though the

true dynamics remain oscillatory. �e probabilistic solver correctly captures this—

the constant width credible bands in the range t ∈ [40, 50] accurately re�ect the

completely uninformative nature of the integrator whose error is being modelled. �e

conclusion that this output suggests—that the method in question is not informative

for the true solution at all—is itself ultimately informative for the practitioner.

In order to demonstrate that the probabilistic backward Euler method can work in

a similar manner to the explicit probabilistic methods of �gures 5.7–5.10 when the

step-size h is chosen commensurate with the accuracy and stability of the underlying

method, we provide a plot in �gure 5.12 of this integrator being run with a much

smaller step-size of h = 0.02. �is plot shows that at this reduced step-size, the

probabilistic solver does captures the correct dynamics—with meaningful credible

bands nevertheless representing the scale of uncertainty in the method’s output.

To complete our visual survey of the new methods considered in this thesis, in �gure

5.13 we give the output of the second-order probabilistic Adams–Moulton integrator

for h = 0.1 and, since as in the case of the third-order Adams–Bashforth method the

output is hard to discern by eye, we repeat the calculation for h = 0.2 in �gure 5.14.

5.4 inference in the inverse problem

Having discussed the output of probabilistic algorithms on the solution of a fully-

speci�ed forward model, we now consider the e�ect of their use in the case that the

values of the model parameters θ are unknown. We seek to infer these unknown

parameters in a Bayesian inverse problem framework. Once again, we �rst verify and

then extend the approach from Conrad et al. [Con16].

Our example in this section is the FitzHugh–Nagumo model from Section 5.1.1,

considered in the interval t ∈ [0, 10]. We �rst generate a synthetic dataset Y of 10

two-dimensional data-points collected at times tY = {1, 2, . . . , 10}. A�er calculating
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a high-accuracy Runge–Kutta solution, the value of this reference solution at each

time ordinate tYj
is independently corrupted by centred Gaussian noise with variance

σ = 2.5 × 10−3 ⋅ I2.42
We then treat the parameter θ as unknown and assign to each component θ(v) a

log-normal prior distribution such that p(log θ(v)) ∼ N(θ(v)true , 1), independently
for each v ∈ {1, 2, 3}. �is follows the approach in Conrad et al. [Con16]. (An

alternative reasoning for how to set the parameter prior for this system is suggested by

Campbell [Cam07, §2.3] and stems from an understanding of the range of parameters

outside of which the qualitative behaviour of the system changes—it stops exhibiting

periodicity—and then spreading the prior probability mass mainly on this range.)

In preliminary experiments, we found that prior choice has very limited impact on

posterior output and thus parameter inference—indeed even using the improper

prior p(θ) ∝ 1 throughout was not found to be problematic. �ese �ndings are likely

due to the fact that the synthetic data are su�ciently informative about the system

that the prior term in the model is dominated by the likelihood.

We assume a Gaussian likelihood with variance σ the same as that used to generate

the synthetic data, and we also assume that the initial state X0 is known. We then run

an MCMC procedure to infer the posterior distribution of θ. �e way in which the

MCMC algorithm is designed critically a�ects its sampling performance—indeed,

di�erent choices can even result in a subtly di�erent problem being solved. �e next

section considers this issue.

5.4.1 MCMC for randomised integrators

Recall from Section 1.4.1 that the object of our interest is the posterior distribution

p(θ∣Y). Application of Bayes’�eorem gives the proportionality relation

p(θ∣Y) ∝ p(θ)L(Y ; θ) (5.4)

In the framework we have been considering, the likelihood term L(Y ; θ) depends on
the numerical solution Z of an ODE, and the core theme of this thesis has concerned

the use of randomised methods in this context, and the treatment of Z as a random

variable rather than as a deterministic object.

Randomised methods make a draw ω from a sample space Ω, use this instantiation to

calculate the random numerical solution Z, and then execute the random likelihood

42For simplicity, we choose to generate the data Y at time ordinates which will coincide with
discrete knots of our later simulations. Of course, if this were not the case—as may well be the case in
a real-data setting—some interpolation procedure would have to be additionally performed in order
to calculate likelihood values we need.
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evaluation relative to this approximate forward solution of the system. Speci�cally, for

methods based on stepwise Gaussian perturbations ξi—including the probabilistic

Adams–Bashforth integrator from Section 3.3 and the Gaussian approximation to

the probabilistic Adams–Moulton integrator from Section 4.4.2—the set of realised

perturbations (a draw from the random variable ξ) is determined by the random seed

ω and possibly θ, and Z of course depends on these.43

�e likelihood function—expressed in a way that explicitly notes these dependencies—

should properly be written as L(Y ; θ , Z(ξ)), and a complete Bayesian analysis then

requires that the corresponding posterior be rewritten as p(θ , Z(ξ)∣Y). Of course,
this newly-introduced randomness needs to be marginalised—this results in a modi-

�cation to the right-hand side of equation (5.4) given by

p(θ) ∫
Ξ
L(Y ; θ , Z(ξ∣θ))dPξ (5.5)

Note that, as in (2.11), we have chosen to write the probability measure over which the

expectation is taken as Pξ∣θ rather than p(ξ∣θ), and the random numerical solution

as Z(ξ∣θ). �is emphasises �rstly that, in general, ξ is allowed to depend on the

parameter θ. In the case of the explicit integrator of Chapter 3, ξ consists of a discrete

sequence of Gaussian perturbations with �xed scale and as such has a distribution

independent of θ. However, in the case of the implicit integrator of Chapter 4, it is

clear that the perturbations ξ do depend on θ. Secondly, the reason for avoiding the

notation p(ξ∣θ) is to highlight the fact that, in the latter case, we do not have access

to a pointwise-evaluable density for ξ given θ—instead, we can draw samples from

its distribution. Since our overall aim is to draw a set of samples from p(θ∣Y), this is
su�cient for our purposes.

It is thus clear that the expression in (5.5) can clearly only be approximated numerically,

even pointwise. However, the additional stochasticity now present means that there

are several possible approaches to implementing aMonte Carlo algorithm for θ, which

we now survey.

Marginalising over the randomised likelihood

�is strategy marginalises the introduced stochastic randomness in order to give a

random approximation LK(Y ; θ) to the expected likelihoodEξ∣θL(Y ; θ , Z(ξ)).�is is

then simply inserted into theMCMCalgorithm for θ as if it were the true (inaccessible)

43�e unapproximated implicit methods of Section 4.4.3 , which require an internal Monte Carlo
simulation to implement, are more complicated to treat. It may theoretically be possible to treat ω
as additionally including the random seed driving the inner Monte Carlo calculations at each step,
though this would introduce signi�cant additional complexity. Later in this section we consider some
further consequences of this issue.
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likelihood L(Y ; θ). �is is the approach suggested and implemented by Conrad et

al. [Con16]. �e approximation LK(Y ; θ) is made by another, inner, Monte Carlo

procedure, given by

LK(Y ; θ) =
1

K

K∑
k=1

L(Y ; θ , Z(ξ[k])) (5.6)

At each iterationm of the outerMCMCover θ, this algorithm samples multiple ξ[k] in-

dependently fromPξ∣θ ,44 evaluates the random likelihood for each, then forms aMonte

Carlo sum to give an approximation to the expected likelihood Eξ∣θL(Y ; θ , Z(ξ)).
�is gives samples from (5.5) of the form

p(θ[m]) [ 1
K

K∑
k=1

L(Y ; θ[m], Z(ξ[k,m]))] (5.7)

�e incorporation of the likelihood approximation into an MCMC algorithm is jus-

ti�ed by the principle of psuedo-marginal MCMC [And09]. Strictly speaking, this

requires an unbiased estimator of the likelihood in order for the outer MCMC algo-

rithm to still correctly target the exact posterior distribution. However, we cannot

claim here that the inner Monte Carlo sum is unbiased. If, as in Conrad et al. [Con16,

§3.2], we accept that we cannot eliminate all the bias and instead are primarily con-

cerned with undue optimism in the predicted variance, this approach may su�ce.

Nevertheless, it is clear that this introduces a further type of approximation error to

the problem.45

In our experiments, we found that for the MCMC over θ to be e�ective, K—the

number of iterations in the inner Monte Carlo sum—is sometimes required to be very

large. �is seems to be because the estimator for the expected likelihood LK(Y ; θ)
has high enough variance, even for moderate K, that proposed moves θ∗ are rarely

accepted in the outer simulation targeting p(θ∣Y). In e�ect, an algorithm of this form

operates over the joint space Θ × Ξ but, since the ξ[k] are sampled independently,

candidate moves of the outer MCMC over θ are invariably distant from the current

point in the joint space. �is hinders mixing.

As a very rough conclusion, we �nd K < N/10 (where N = ⌊h−1tend⌋ is the num-

ber of steps in a run of the forward model) makes it impossible for a Metropolis–

Hastings algorithm targeting p(θ∣Y) to mix properly. �us, in our example, solving
44In reality, this simply means re-running the randomised integrator multiple times with the set of

stepwise perturbations ξ[k](ω) generated by di�erent random seeds ω[k] each time.
45If the desire is to actually quantify the e�ect of such biased approximations on posterior inference

in this setting, several theoretical results focusing on this type of construction are given in Lie et al.
[Lie18]. �ese results focus on giving bounds on the Hellinger metric between the exact posterior and
one calculated using randomised solutions of the forward model.
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the FitzHugh–Nagumo for t ∈ [0, 10] with a relatively coarse step-size of h = 0.1

requires a minimum of 10 repetitions of the likelihood evaluation at each step. In fact,

for the algorithm to function ‘well’ rather than simply adequately, we �nd we require

K ≫ N/10. �is introduces a signi�cant additional computational burden.

Fixing ξ for the entire simulation

An alternative approach, intended to avoid the instability caused by the variability of

the inner Monte Carlo sum in (5.7), is to pre-generate a �nite set of K instantiations

ξ† ≡ {ξ[1], . . . , ξ[K]} and reuse these at every step of the outer MCMC. In e�ect, this

eliminates ξ as a random variable altogether, and the algorithm targets instead a

modi�ed deterministic posterior pξ†(θ∣Y). In this scenario, posterior inference over

θ will depend on the speci�c set ξ†, and the e�ect of this can be expected to be hard to

quantify. Furthermore, while the outer MCMC over θ may be induced to mix better

in this set-up, the computational expense of running K parallel forward solves at each

step is still present.

It is important to note that this idea assumes that a given sample ω[k] ∈ Ω generates

a realised value ξ(ω[k]) of ξ which can be meaningfully reused by the algorithm in

subsequent steps. If ξ is a set of N independent Gaussian perturbations then this is

straightforward, since those same perturbations can simply be added stepwise during

a second simulation using a new parameter value. However, as pointed out in footnote

43, for an implicit integrator requiring an inner Monte Carlo simulation at each step—

a random procedure itself—it is not obvious how to do this. As a result, this approach

is only realistic for implicit integrators under the Gaussian approximation regime of

Section 4.4.2.

As an aside, this formulation opens up the possibility of choosing ξ† intentionally to

minimise in some way the variance of LK relative to the value of K. �is thought

is somewhat reminiscent of quasi-Monte Carlo methods [Caf98], though the com-

plicated relationship between ξ and the quasi-randomised likelihood L(Y ; θ , Z(ξ))
means that this is likely to be a highly non-trivial endeavour.

Simultaneous inference over θ and Z(ξ)
Setting K = 1 in (5.7) results in samples from (5.5) of the form

p(θ[m])L(Y ; θ[m], Z(ξ[m])) (5.8)

�is formulation—in terms of a single Monte Carlo loop—circumvents the need to

perform multiple likelihood calculations for each candidate parameter θ∗, but unless

care is taken in the design of the algorithm, it will su�er from the problem of mixing

even more than before, since clearly 1 ≤ N/10 for most realistic simulations.
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Considered as in (5.8), the MCMC targets the joint posterior p(θ , Z(ξ)∣Y) directly,
though some strategy has to have been assumed for independently sampling each ξ[m]

from the measure Pξ∣θ . How then should this joint posterior be sampled from? Even

if a marginal density p(ξ∣θ) is accessible—as in the case of integrators using stepwise

Gaussian perturbations—it makes little sense to try to construct a Markov chain to

sample from it. �is is because the dimension of Ξ is the number of time-steps N ,

and when this is large it will be di�cult to construct a transition kernel which will

output proposals ξ∗ likely to be accepted by a Markov chain-type algorithm, due to

the well-known ‘curse of dimensionality’.

One could instead construct aMarkov chain onΘ alone and propose ξ∗ independently

from p(ξ∣θ) at each iteration. However, the e�ect on the value of L(Y ; θ , Z(ξ))
of an independently-sampled novel ξ∗ will be even more pronounced without the

likelihood-averaging present in the K > 1 setting described above—this construction

is simply that one but with K = 1. It is therefore clear that proposing (θ∗, ξ∗)
simultaneously at each step is unworkable, since a Metropolis–Hastings algorithm

has little hope of generating a useful set of samples in this regime.

Our suggested solution is to use a hybrid scheme, in which a candidate parameter θ∗

is proposed and accepted or rejected having had its likelihood calculated using the

same instantiation of perturbations ξ[m] as in the current iteration k. If accepted as

θ[m+1], a new ξ[m+1] can then be sampled and the likelihood value recalculated ready

for the next proposal. �e proposal at step m + 1 is then compared to this new value.

Pseudocode for this algorithm is given in Algorithm 2.

�is approach requires that L(Y ; θ , Z(ξ)) be recalculated exactly once for each time

a new parameter value θ∗ is accepted. �e cost of this strategy is therefore bounded

by twice the cost of an MCMC algorithm operating with a classical integrator—the

bound being achieved only in the scenario that all proposed moves θ∗ are accepted.

�is is not an unreasonable upli� in total computation, especially when compared to

strategies which require many more forward solves per sample.46

For the remainder of our simulations we adopt this last-described approach, and �nd

it works well in general. We verify the sampling performance of our algorithm in

the next section by supplying some specimen diagnostic plots from the simulations

alongside our main statistical output.

46Strictly-speaking, this algorithm does not target the exact density p(θ , Z(ξ)∣Y) in the case of the
implicit integrator, for which ξ depends on θ. �is is because the use of a novel θ∗ at each iteration
does not keep ξ exactly constant, thus the additive perturbations cannot easily be reused. In order
to ensure absolute exactness, the additional computational expense of drawing θ∗ independently,
followed by ξ∗∣θ∗ independently, is therefore unavoidable. For our simulations, we accept this minor
deviation from exactness in order to produce a workable algorithm.
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mcmc algorithm for sampling p(θ , Z(ξ)∣Y)
1 input θ[1]

2 ξ[1] ∼ Pξ

3 for 1 ≤ m ≤ M
4 ϕ[m,m] ← p(θ[m])L(Y ; θ[m], Z(ξ[m]))
5 θ∗ ∼ qm(⋅∣θ[m])
6 ϕ[∗,m] ← p(θ∗)L(Y ; θ∗, Z(ξ[m]))
7 α[m] ←min(1, ϕ[∗,m]/ϕ[m,m])
8 r[m] ∼ U[0, 1]
9 if r[m] < a[m]

10 θ[m+1] ← θ∗

11 ξ[m+1] ∼ Pξ

13 else

14 θ[m+1] ← θ[m]

16 end

15 m ← m + 1
17 end

18 output θ[2], . . . , θ[M]

Algorithm 2: Algorithm for drawing M samples from the joint posterior
p(θ , Z(ξ)∣Y), exact when Pξ∣θ = Pξ . At iteration m, ξ[m] is drawn indepen-
dently from the measure Pξ—for methods based on stepwise Gaussian pertur-

bations, this draw is then used in the calculation of Z(ξ[m]). By contrast, θ∗ is
drawn from a symmetric Markov chain transition kernel qm(⋅∣θ[m]), whose form
depends on the value of m as described by equation (5.9). In assessing whether
to accept θ∗, the algorithm uses the same sample ξ[m] to calculate the value
of ϕ for both current and proposed points. A straightforward modi�cation to
the expression for α[m] in line 7 would permit generalisation to non-symmetric
qm(⋅∣θ[m]). For further details see main text.

5.4.2 Parameter inference for the FitzHugh–Nagumo model

In this section we present the results of implementing an MCMC algorithm of the

type just considered, for the purposes of inferring the parameters of the synthetic-data

inverse problem detailed in Section 5.4.

To draw samples from p(θ , Z(ξ)∣Y), we construct an MCMC algorithm using the

Adaptive Metropolis–Hastings algorithm of Haario et al. [Haa01], whereby the tran-

sition kernel qm(θ∗∣θ[m]) at step m is a centred Gaussian N (0, Σm) with variance

equal to47

Σm =

⎧⎪⎪⎨⎪⎪⎩
10−1h ⋅ ID , for 0 ≤ m ≤ M′

(2.38)2D−1 ⋅ (Cov (θ[0], . . . , θ[m−1]) + 10−5 ⋅ ID) for M′ < m ≤ M
(5.9)
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�e index M′ represents an initialisation horizon before which the algorithm runs

as classical (unadaptive) Metropolis–Hastings, and a�er which adaptation begins.

�e variable D is simply the dimension of the parameter θ, in this case 3. �e scale(2.38)2D−1 arises from a recommendation on optimal scaling of Metropolis–Hastings

algorithms in Roberts et al. [Rob97], while the addition of a small multiple of the

identitymatrix is recommended byHaario et al. themselves to reduce the likelihood of

instability in the algorithm resulting from a near-singular covariance matrix [Haa01].

Note that it is possible to calculate the covariance term recursively—this avoids the

expense of having to recalculate it from scratch at each iteration, which will increase

with m if performed non-recursively.

We collect 1000 samples by initialising the MCMC at the true parameter values

and running M = 11000 iterations, setting m′ = 500, discarding the �rst 2m′ =

1000 samples as burn-in, then thinning by a factor of 10. We perform this for four

di�erent step-sizes h = {0.005, 0.01, 0.02, 0.05}, �rst using the classical solver, then
a calibrated probabilistic solver, to evaluate the likelihood of the forward model.

Specimen performance diagnostics are given in �gure 5.19, which displays the path of

the Markov Chain and its autocorrelation sequence for the simulation run using the

probabilistic forward Euler method (top two panes) and probabilistic backward Euler

method (bottom two panes), both with step-size h = 0.01. From these, it is apparent

that the chains mix well using either algorithm and that successive samples are not

closely correlated. Simulation diagnostics for the other values of h are similar.

For the forward Euler and backward Euler methods, the resulting posterior distribu-

tions for (θ(3) ≡ c, θ(2) ≡ b) are shown in �gures 5.15 and 5.16 respectively. In each

case, the top pane plots the posteriors obtained when using the classical integrator. For

the coarser simulations, the bias these produce is evident—a practitioner reporting a

maximum a posteriori or empirical mean estimator and associated credible intervals

for θ(3) ≡ c would unknowingly submit high con�dence in an incorrect conclusion.

�e bottom panes, which display the same simulations but now with the forward

model solved using calibrated probabilistic integrators, demonstrate how these pos-

teriors have broadened to curb this unjusti�ed overcon�dence. �e bias is largely

una�ected, but the variance has increased so that the true solution is now located in a

region of non-negligible posterior probability mass. �e result for the forward Euler

method is similar to that in Conrad et al. [Con16]; the result for the backward Euler

47Note that this transition kernel is symmetric, i.e. qm(θ′∣θ′′) = qm(θ′′∣θ′) for any θ′ , θ′′ ∈ Θ
and for all 0 ≤ m ≤ M. �is feature is assumed in Algorithm 2—the given form of the acceptance
probability α[m] requires it—though generalisation to non-symmetric kernels involves only minor
modi�cations.
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method is based on the new construction in Chapter 4 and demonstrates similar

qualitative behaviour.

�ese conclusions are also reported in tabular form in tables 5.2 and 5.3. Here, the

empirical mean estimator and the empirical standard deviation of each set of 1000

samples is given. We then report the error in the empirical mean estimator (compared

to the known true parameter value) and the number of standard deviations that this is

equivalent to. Particularly for the parameter c, the e�ect described in the previous para-

graph is clearly visible. For example, for all runs except those with smallest h, the poste-

riormean estimator calculated from theMCMCsimulations using the classical integra-

tors is over two standard deviations from the true value. Loosely speaking, this range

represents an approximately 95% credible region (if considered in one dimension).

Similar results are obtainable for the second-ordermethods, andwe present equivalent

plots and tables in �gures 5.17–5.18 and tables 5.4–5.5. �e same essential phenomenon

described for the �rst-order methods is partly visible, though it is also true that these

results are less clear-cut in several respects. For the 2-step Adams–Bashforth method

(�gure 5.17), only the simulation with step-size h = 0.1 shows marked bias in the

posterior estimate resulting from use of the classical solver. �e probabilistic solver

redresses this by returning a much broader posterior, as desired, though in this case

it is not clear if the degree to which the posterior has widened correctly re�ects the

aforementioned bias. It is also the case that a broadening e�ect is observed with

smaller step-sizes—most visible for h = 0.05—in cases where the classical integrator

shows very little bias.

�e results for the second-order implicit method are also equivocal. Here, very little

di�erence is apparent between the posteriors resulting from simulations of di�erent

mesh-sizes. �is output suggests that the spread of the observed posterior distribution

ultimately results from the noise in the data Y and that, in the sense we are interested

in, the algorithms are all solving the ‘exact’ problem. In other words, the parameter

uncertainty visible here is likely to derive from the underlying variability of the data

in the problem, rather than from any shortcoming in the chosen numerical method.

�e obvious response to this �nding would be to consider situations in which the

scale of noise in the data is smaller or larger than here. We undertook several such

experiments and found close to singular posteriors in the former case—probably

due to the data becoming so much more highly informative with small noise; and

experienced problems with stability in the latter case—likely due to the sensitive

dependence of the dynamics on the parameter θ, where the noisier data provides

the opportunity for su�cient variation that the integrity of the MCMC simulation is

compromised.
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Figure 5.15: Posterior density contours of (b, c) for the FitzHugh–Nagumo inverse
problem. �e contours are calculated by kernel density estimates based on 1000
samples in each case. �e top pane shows posteriors resulting when the forward
model is solved by the classical forward Euler method, while the bottom pane
shows those solved by the probabilistic forward Euler method. �e di�erent
colours represent the simulation repeated at di�erent step-sizes h.
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Figure 5.16: Posterior density contours of (b, c) for the FitzHugh–Nagumo inverse
problem. �e contours are calculated by kernel density estimates based on 1000
samples in each case. �e top pane shows posteriors resulting when the forward
model is solved by the classical backward Euler method, while the bottom pane
shows those solved by the probabilistic backward Euler method. �e di�erent
colours represent the simulation repeated at di�erent step-sizes h.
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Figure 5.17: Posterior density contours of (b, c) for the FitzHugh–Nagumo inverse
problem. �e contours are calculated by kernel density estimates based on 1000
samples in each case. �e top pane shows posteriors resulting when the forward
model is solved by the classical 2-step Adams–Bashforth method, while the bottom
pane shows those solved by the probabilistic 2-step Adams–Bashforth method. �e
di�erent colours represent the simulation repeated at di�erent step-sizes h.
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Figure 5.18: Posterior density contours of (b, c) for the FitzHugh–Nagumo inverse
problem. �e contours are calculated by kernel density estimates based on 1000
samples in each case. �e top pane shows posteriors resulting when the forward model
is solved by the classical 1-step Adams–Moulton method, while the bottom pane shows
those solved by the probabilistic 1-step (second-order) Adams–Moulton method. �e
di�erent colours represent the simulation repeated at di�erent step-sizes h.
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h
θ̂ :=

E(θ∣Y) σ ∶=√
Var(θ∣Y) θ̂ − θ ∣ θ̂ − θ

σ
∣

c
l
a
s
s
ic
a
l

f
o
r
w
a
r
d
e
u
l
e
r

a 0.1888 0.0022 -0.0112 5.15
0.1 b 0.1834 0.0120 -0.0166 1.38

c 2.8522 0.0061 -0.1478 24.26

a 0.1940 0.0020 -0.0060 3.02
0.05 b 0.1924 0.0118 -0.0076 0.64

c 2.9287 0.0057 -0.0713 12.62

a 0.1977 0.0018 -0.0023 1.24
0.02 b 0.1962 0.0108 -0.0038 0.35

c 2.9748 0.0057 -0.0252 4.45

a 0.1991 0.0017 -0.0009 0.53
0.01 b 0.1972 0.0109 -0.0028 0.25

c 2.9899 0.0055 -0.0101 1.84

a 0.1997 0.0016 -0.0003 0.17
0.005 b 0.1973 0.0111 -0.0027 0.24

c 2.9979 0.0053 -0.0021 0.39

p
r
o
b
a
b
il
is
t
ic

f
o
r
w
a
r
d
e
u
l
e
r

a 0.1731 0.0959 -0.0269 0.28
0.1 b 0.2548 0.1685 0.0548 0.32

c 2.8444 0.2403 -0.1556 0.65

a 0.1876 0.0606 -0.0124 0.20
0.05 b 0.1880 0.1169 -0.0120 0.10

c 2.9105 0.1370 -0.0895 0.65

a 0.1984 0.0223 -0.0016 0.07
0.02 b 0.1802 0.0788 -0.0198 0.25

c 2.9715 0.0559 -0.0285 0.51

a 0.1996 0.0119 -0.0004 0.03
0.01 b 0.1853 0.0522 -0.0147 0.28

c 2.9935 0.0309 -0.0065 0.21

a 0.1995 0.0075 -0.0005 0.06
0.005 b 0.1922 0.0375 -0.0078 0.21

c 3.0032 0.0202 0.0032 0.16

Table 5.2: Posterior summary for θ = (a, b, c) in the FitzHugh–Nagumo model.
�e forward solve was undertaken using the classical (top pane) or probabilistic
(bottom pane) forward Euler method. For each simulation, an MCMC was run

giving 1000 sample trajectories θ[k]. �e posterior ensemble mean θ̂ ∶= E(θ∣Y)
and standard deviation σ ∶=√Var(θ∣Y) are given, along with the error θ̂ − θ of
the mean estimator relative to the true values (0.2,0.2,3). �e last column displays
the relative magnitude of this error and the ensemble standard deviation.
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h
θ̂ :=

E(θ∣Y) σ ∶=√
Var(θ∣Y) θ̂ − θ ∣ θ̂ − θ

σ
∣

c
l
a
s
s
ic
a
l

b
a
c
k
w
a
r
d
e
u
l
e
r

a 0.2092 0.0015 0.0092 5.98
0.05 b 0.1684 0.0125 -0.0316 2.52

c 3.1015 0.0052 0.1015 19.69

a 0.2035 0.0014 0.0035 2.44
0.02 b 0.1949 0.0108 -0.0051 0.48

c 3.0392 0.0047 0.0392 8.27

a 0.2017 0.0015 0.0017 1.14
0.01 b 0.2004 0.0109 0.0004 0.04

c 3.0206 0.0052 0.0206 3.96

a 0.2010 0.0015 0.0010 0.66
0.005 b 0.2000 0.0109 0.0000 0.00

c 3.0127 0.0050 0.0127 2.52

p
r
o
b
a
b
il
is
t
ic

b
a
c
k
w
a
r
d
e
u
l
e
r

a 0.2112 0.0357 0.0112 0.31
0.05 b 0.1710 0.0933 -0.0290 0.31

c 3.0713 0.0978 0.0713 0.73

a 0.2068 0.0131 0.0068 0.52
0.02 b 0.1833 0.0563 -0.0167 0.30

c 3.0356 0.0374 0.0356 0.95

a 0.2022 0.0072 0.0022 0.30
0.01 b 0.1930 0.0355 -0.0070 0.20

c 3.0247 0.0190 0.0247 1.30

a 0.2011 0.0044 0.0011 0.25
0.005 b 0.1939 0.0253 -0.0061 0.24

c 3.0171 0.0129 0.0171 1.33

Table 5.3: Posterior summary for θ = (a, b, c) in the FitzHugh–Nagumo model.
�e forward solve was undertaken using the classical (top pane) or probabilistic
(bottom pane) backward Euler method. For each simulation, an MCMC was run

giving 1000 sample trajectories θ[k]. �e posterior ensemble mean θ̂ ∶= E(θ∣Y)
and standard deviation σ ∶=√Var(θ∣Y) are given, along with the error θ̂ − θ of
the mean estimator relative to the true values (0.2,0.2,3). �e last column displays
the relative magnitude of this error and the ensemble standard deviation.
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h
θ̂ :=

E(θ∣Y) σ ∶=√
Var(θ∣Y) θ̂ − θ ∣ θ̂ − θ

σ
∣

c
l
a
s
s
ic
a
l
2
-s
t
e
p

a
d
a
m
s
–
b
a
s
h
f
o
r
t
h

a 0.2008 0.0014 0.0008 0.58
0.1 b 0.1965 0.0104 -0.0035 0.33

c 3.0072 0.0048 0.0072 1.51

a 0.2005 0.0015 0.0005 0.30
0.05 b 0.1982 0.0114 -0.0018 0.16

c 3.0056 0.0053 0.0056 1.06

a 0.2004 0.0015 0.0004 0.26
0.02 b 0.1993 0.0108 -0.0007 0.07

c 3.0049 0.0052 0.0049 0.94

a 0.2004 0.0016 0.0004 0.23
0.01 b 0.1985 0.0115 -0.0015 0.13

c 3.0055 0.0056 0.0055 0.97

p
r
o
b
a
b
il
is
t
ic

2
-s
t
e
p

a
d
a
m
s
–
b
a
s
h
f
o
t
h

a 0.1988 0.0023 -0.0012 0.49
0.1 b 0.2174 0.0177 0.0174 0.99

c 3.0112 0.0083 0.0112 1.35

a 0.1999 0.0016 -0.0001 0.05
0.05 b 0.2035 0.0129 0.0035 0.27

c 3.0070 0.0059 0.0070 1.18

a 0.2002 0.0015 0.0002 0.17
0.02 b 0.2006 0.0112 0.0006 0.05

c 3.0052 0.0053 0.0052 0.98

a 0.2003 0.0015 0.0003 0.21
0.01 b 0.2002 0.0111 0.0002 0.02

c 3.0047 0.0051 0.0047 0.91

Table 5.4: Posterior summary for θ = (a, b, c) in the FitzHugh–Nagumo model.
�e forward solve was undertaken using the classical (top pane) or probabilistic
(bottom pane) 2-step Adams–Bashforth method. For each simulation, an MCMC

was run giving 1000 sample trajectories θ[k]. �e posterior ensemble mean θ̂ ∶=
E(θ∣Y) and standard deviation σ ∶=√Var(θ∣Y) are given, along with the error

θ̂ − θ of the mean estimator relative to the true values (0.2,0.2,3). �e last column
displays the relative magnitude of this error and the ensemble standard deviation.

136



h
θ̂ :=

E(θ∣Y) σ ∶=√
Var(θ∣Y) θ̂ − θ ∣ θ̂ − θ

σ
∣

c
l
a
s
s
ic
a
l
1-
s
t
e
p

a
d
a
m
s
–
m
o
u
l
t
o
n

a 0.2008 0.0014 0.0008 0.58
0.1 b 0.1965 0.0104 -0.0035 0.33

c 3.0072 0.0048 0.0072 1.51

a 0.2005 0.0015 0.0005 0.30
0.05 b 0.1982 0.0114 -0.0018 0.16

c 3.0056 0.0053 0.0056 1.06

a 0.2004 0.0015 0.0004 0.26
0.02 b 0.1993 0.0108 -0.0007 0.07

c 3.0049 0.0052 0.0049 0.94

a 0.2004 0.0016 0.0004 0.23
0.01 b 0.1985 0.0115 -0.0015 0.13

c 3.0055 0.0056 0.0055 0.97

p
r
o
b
a
b
il
is
t
ic

1-
s
t
e
p

a
d
a
m
s
–
m
o
u
l
t
o
n

a 0.1988 0.0023 -0.0012 0.49
0.1 b 0.2174 0.0177 0.0174 0.99

c 3.0112 0.0083 0.0112 1.35

a 0.1999 0.0016 -0.0001 0.05
0.05 b 0.2035 0.0129 0.0035 0.27

c 3.0070 0.0059 0.0070 1.18

a 0.2002 0.0015 0.0002 0.17
0.02 b 0.2006 0.0112 0.0006 0.05

c 3.0052 0.0053 0.0052 0.98

a 0.2003 0.0015 0.0003 0.21
0.01 b 0.2002 0.0111 0.0002 0.02

c 3.0047 0.0051 0.0047 0.91

Table 5.5: Posterior summary for θ = (a, b, c) in the FitzHugh–Nagumo model.
�e forward solve was undertaken using the classical (top pane) or probabilistic
(bottom pane) 1-step Adams–Moulton method. For each simulation, an MCMC

was run giving 1000 sample trajectories θ[k]. �e posterior ensemble mean θ̂ ∶=
E(θ∣Y) and standard deviation σ ∶=√Var(θ∣Y) are given, along with the error

θ̂ − θ of the mean estimator relative to the true values (0.2,0.2,3). �e last column
displays the relative magnitude of this error and the ensemble standard deviation.
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Figure 5.19: Example performance diagnostic plots of the MCMC simulations run
to infer the parameters of the FitzHugh–Nagumo model. �ese plots summarise
the sampling for the parameter a and correspond to the case h = 0.01 (the green
posterior in �gures 5.15 and 5.16). �e top two panes display respectively the path
of the Markov chain and its autocorrelation sequence when the forward model is
solved using the probabilistic forward Euler method, and the bottom two panes
display the same for the probabilistic backward Euler method.
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We also ran simulations for third- and higher-orders methods, and found an exac-

erbation of these issues. �e simplicity of the test problem, combined with lack of

stability of those higher-order methods even in the classical case, means that the

desired e�ect becomes ever more di�cult to demonstrate. Further investigation is

required to identify problems for which these higher-order integrators may be more

appropriate, and for which stability issues do not form a practical impediment to

their use. We brie�y reconsider this issue in Section 6.2.3.

5.5 uncertainty in the forward model

In this sectionwe present an interesting by-product of the parameter inference process

undertaken in Section 5.4.2. As discussed there, the result of performing an MCMC

simulation on the distribution p(θ , Z(ξ)∣Y) is the acquisition of paired samples{θ[m], Z[m]} of model parameters and forward model trajectories. Marginalising

over the paths Z—in that context, simply disregarding those samples—allowed us to

perform posterior inference on θ.

We now explore the opposite scenario. Consider a situation in which we have a

dataset Y and a di�erential equation model of the form (1.11) whose parameters are

not known a priori. Our object of interest in this scenario may be the value of the

solution x(tend) of the initial value problem at time tend. In this case, we can instead

marginalise the parameter θ by discarding the samples {θ[m]} and interpret instead

the ensemble of trajectories {Z[m]} as representing the uncertainty in x(t), in the

manner described in Section 2.2.

We demonstrate this by once again returning to the Brusselator model. We generate

10 synthetic data at times tY = 1, 2, . . . , 10, each with independent measurement error

σ = 2.5 × 10−3 ⋅ I2, exactly as we did for the FitzHugh–Nagumo model in Section 5.1.1.

We use the parameters θ = (1.4, 3), though of course a�er generating the data we

proceed by considering them unknown. Once again, we assign log-normal priors

p(log θ(v)) ∼ N(θ(v)true , 1) independently for each component of θ, and assume a

Gaussian error model with σ known, as well as known initial value X0 = (1, 2)T .
We integrate the system over a timewindowmuch longer than the range of locations at

which we have generated data. For lower-ordermethods, or where too large a step-size

h is chosen, we expect that at some point the integrators will fail, in a similar manner

to that seen when integrating the fully-speci�ed forward model in Section 5.4.2. As

there, we desire the probabilistic versions of the algorithms to detect this breakdown

in some way, indicating to the user that the method selected is inappropriate in the

given context. For this example, we will assume that the values of the solution function

xθ(t) at the three times t = 10, 30, 50 are of interest.
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In �gures 5.20–5.23, we plot the summary statistics of ensembles of 1000 solution tra-

jectories {Z[m]} of the forwardmodel, each corresponding to a sample θ[m] generated

by an MCMC algorithm analogous to that explained in Section 5.4.1. �e �gures plot

the trajectories resulting from the use of the classical (top two panes) and probabilistic

(bottom two panes) integrators for respectively the �rst- and second- order implicit

and explicit methods. �e step-size throughout is h = 0.1, and we display the results

for the interval t ∈ [0, 50].
As in �gures 5.7–5.14, the three coloured bands represent 1σ , 2σ and 3σ bands. �e

dashed blue line describes the ensemble mean—this is not the single trajectory of one

particular ‘mean’ sample but instead the result of calculating the mean for each time

point ti separately and plotting the path of these means as a sort of pseudo-trajectory.

�e solid black line again describes the reference solution xθ(t).
For both �rst-order methods (�gures 5.20 and 5.22), the use of a classical solver

with this value of h visibly fails to correctly capture the underlying dynamics. For

a periodic system such as the Brusselator, there exists a horizon beyond which the

global error in an iterative integrator accumulates in such a way that e�ectively

no informative conclusion can be drawn about the value of the solution. �is is a

well-known phenomenon in numerical integration, and was discussed in Section

4.4.1 in the context of integrating the fully-speci�ed forward model. �e �rst-order

algorithms have clearly reached and passed this horizon during the interval shown.

Despite some visible notion of solution uncertainty arising from the variation in the

parameter θ, any sensible estimator for x(50) derived from the blue paths in the top

panes of �gures 5.20 and 5.22 and reported—the ensemble mean, say—will be an

obviously poor estimate for the true solution, shown in black. Furthermore, this poor

estimate will be reported with high con�dence since no indication exists in the output

that it may be wrong.

In thinking about this conclusion, it is instructive to consider the sequences of black

dots in �gures 5.7 and 5.11, which describe the trajectory of the classical method when

the parameter value θ was taken to be known. Now with θ unknown, the top panes

of �gures 5.20 and 5.22 give the range of the solution paths arising from the joint

MCMC procedure over θ and Z. �is ensemble of paths is equivalent in a sense to

the black dots in �gures 5.7 and 5.11—the non-zero variance of the ensemble arising

from the parameter uncertainty in this setup. However, while these bands do have

noticeable non-zero width, they clearly do not correctly track the true underlying

dynamics. �us in this case, the parameter uncertainty has a much smaller e�ect on

the marginal path posterior p(Z(ξ)∣Y) than does the error in the numerical method

being used to solve the problem.
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�e probabilistic versions of these simulations, the output of which is shown in the

bottom two panes of �gures 5.20 and 5.22, con�rm the inadequacy of these methods

used for this problem. In fact, the output of the probabilistic forward Euler method

is further worsened by the uncertainty in θ (compare �gure 5.7), resulting in the

suggested distribution for x(50) becoming almost totally uninformative. As we

argued in Section 4.4.1, this is itself an informative statement—rather than reporting

an incorrect estimator with high con�dence, the practitioner can instead justi�ably

report the inadequacy of the chosen solver.

Results for the second-order methods are similar—in both the explicit and implicit

cases shown in �gures 5.21 and 5.23, parameter uncertainty causes a visible increase in

thewidth of the credible intervalswhen comparedwith the plots in �gures 5.8 and 5.13.

�e analysis in this section can be interpreted in a more quantitative manner by

considering the tabulated output in tables 5.6–5.7. �ese give posterior summaries for

the distributions of the random variables x(10), x(30) and x(50), with the �gures

relating to the �rst component x(1) of the two-dimensional Brusselator system given

in �gure 5.6 and those for the second component x(2) in �gure 5.7.

In these tables, columns 3–7 provide the equivalent summaries as were given for

the parameters a, b, c in tables 5.2–5.5. �e column headed ∣σ−1(X̂t − Xt)∣ gives the
relative scale of the error made by reporting the posterior mean as an estimator for

the unknown variable. Consider the �gures given in this column for the classical

forward Euler method. As in the case of the parameter posteriors explored in Section

5.4.2, these suggest that the error of this estimator is many times larger than the

ensemble standard deviation that our model takes as the probability distribution of

the randomised numerical method.

However, unlike there, this statistic is unhelpful elsewhere in the simulation output.

In particular, while the ensemble standard deviation σ ∶= √Var(Xt ∣Y) typically
increases with t and decreases when considering the methods of higher accuracy, the

estimator error X̂t − Xt does not increase in an unbounded fashion, as it did during

posterior inference over the parameters. �e reason for this is that the periodic

nature of the dynamics means that the e�ective range of x is constrained to a compact

subspace of R2. �us, even for numerical methods which have obviously failed to

correctly track the dynamics, the e�ect is an ‘out-of-phase’ trajectory, rather than one

with ever-growing magnitude of error. �e expression ∣σ−1(X̂t − Xt)∣ then becomes a

problematic summary statistic since it does not necessarily evaluate to higher values

in cases of evident poor integrator performance.

�is point is observable in the case of the classical backward Euler method by con-

sidering the entries in the penultimate column of table 5.6. Here, while the quality

of integration clearly declines as time increases, with the path of the credible band

141











first component

t
X̂t ∶=
E(Xt ∣Y)

σ ∶=√
Var(Xt ∣Y) X̂t − Xt ∣ X̂t − Xt

σ
∣ σ × 100

Range
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t
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n

o
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r
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r
d
m
o
d
e
l

10 0.961 0.002 -0.093 45.92 0.3
AB1 30 1.443 0.055 -0.149 2.725 9.3

50 1.520 0.071 0.203 2.862 12.0

10 1.049 0.001 -0.004 3.260 0.2
AB2 30 1.561 0.016 -0.031 1.979 2.7

50 1.319 0.013 0.002 0.156 2.3

10 1.152 0.037 0.098 2.697 6.2
AM0 30 1.472 0.048 -0.121 2.497 8.2

50 1.386 0.044 0.069 1.575 7.5

10 1.057 0.005 0.003 0.677 0.8
AM1 30 1.531 0.035 -0.062 1.773 5.9

50 1.376 0.033 0.059 1.798 5.6

p
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o
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a
b
i
l
i
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t
i
c
i
n
t
e
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r
a
t
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f
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r
w
a
r
d
m
o
d
e
l

10 1.062 0.169 0.009 0.051 28.8
AB1 30 1.439 0.417 -0.154 0.369 71.0

50 1.438 0.408 0.121 0.296 69.4

10 1.055 0.024 0.002 0.064 4.0
AB2 30 1.570 0.156 -0.023 0.146 26.5

50 1.335 0.139 0.018 0.131 23.7

10 1.200 0.137 0.146 1.069 23.2
AM0 30 1.409 0.243 -0.183 0.754 41.4

50 1.421 0.244 0.104 0.427 41.4

10 1.057 0.033 0.003 0.086 5.7
AM1 30 1.545 0.052 -0.047 0.909 8.9

50 1.359 0.046 0.042 0.914 7.8

Reference solution: x(1)(10,30,50) = (1.0538,1.5924,1.3170)
Range = max

t∈[10,50]
x(1)(t) − min

t∈[10,50]
x(1)(t) = 0.5877

Table 5.6: Posterior summary for the �rst component x(1)(t) in the Brussela-
tor model simulated with parameters assumed unknown. For each method, an
MCMC was run giving 1000 sample trajectories Z[k]. Collecting the ensemble of
values at times t = 10, 30, 50, the table gives their mean, standard deviation, and
the error of the mean estimator as compared to a reference solution. �e relative
scale of this error is given in the second-to-last column. �e last column gives
a measure of the scale of the sample standard deviation as a proportion of the
estimated global range of the true solution, expressed as a percentage.
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second component

t
X̂t ∶=
E(Xt ∣Y)

σ ∶=√
Var(Xt ∣Y) X̂t − Xt ∣ X̂t − Xt

σ
∣ σ × 100

Range

c
l
a
s
s
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l
i
n
t
e
g
r
a
t
i
o
n

o
f
f
o
r
w
a
r
d
m
o
d
e
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10 2.446 0.009 0.039 4.385 1.2
AB1 30 2.533 0.0578 0.350 6.061 7.6

50 1.657 0.059 -0.385 6.555 7.7

10 2.393 0.004 -0.014 3.684 0.5
AB2 30 2.207 0.022 0.025 1.118 2.9

50 2.016 0.019 -0.026 1.327 2.5

10 2.361 0.075 -0.046 0.610 9.9
AM0 30 2.161 0.069 -0.022 0.316 9.1

50 2.177 0.070 0.135 1.938 9.1

10 2.387 0.010 -0.020 1.982 1.3
AM1 30 2.234 0.046 0.050 1.105 6.0

50 1.974 0.041 -0.068 1.655 5.4

p
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b
a
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l
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t
i
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n
t
e
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10 2.378 0.261 -0.029 0.110 34.3
AB1 30 2.177 0.502 -0.006 0.0127 65.9

50 2.098 0.496 0.057 0.114 65.2

10 2.395 0.048 -0.012 0.258 6.3
AB2 30 2.160 0.212 -0.022 0.106 27.8

50 2.054 0.185 0.012 0.066 24.3

10 2.309 0.213 -0.098 0.459 28.0
AM0 30 2.203 0.298 0.020 0.068 39.2

50 2.176 0.311 0.134 0.433 40.8

10 2.388 0.076 -0.019 0.248 9.9
AM1 30 2.213 0.074 0.030 0.405 9.7

50 1.991 0.067 -0.051 0.766 8.7

Reference solution: x(2)(10,30,50) = (2.4071,2.1829,2.0417)
Range = max

t∈[10,50]
x(2)(t) − min

t∈[10,50]
x(2)(t) = 0.7618

Table 5.7: Posterior summary for the second component x(2)(t) in the Brussela-
tor model simulated with parameters assumed unknown. For each method, an
MCMC was run giving 1000 sample trajectories Z[k]. Collecting the ensemble of
values at times t = 10, 30, 50, the table gives their mean, standard deviation, and
the error of the mean estimator as compared to a reference solution. �e relative
scale of this error is given in the second-to-last column. �e last column gives
a measure of the scale of the sample standard deviation as a proportion of the
estimated global range of the true solution, expressed as a percentage.
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bearing less and less resemblance to the true solution, the quantity ∣σ−1(X̂t − Xt)∣
decreases from x(10) to x(30), and then once again to x(50).
As a result of this observation, we introduce a di�erent statistic σ/Range(%). �is

expresses—as a percentage—the scale of the accumulated error represented by the

ensemble of randomised trajectories compared to the e�ective range of the dynamics.

�e latter quantity is given for the component v by

E�ective range(v) = max
t∈[10,50]

x(v)(t) − min
t∈[10,50]

x(v)(t) (5.10)

We calculate this using the exact dynamics, though an e�ective measure could also be

estimated using the output trajectories only. In the situation that the distribution of

trajectories covers a large proportion of the e�ective range of the solution, this statistic

indicates that the integrator has failed to correctly track the underlying process. In

the case of the backward Euler method just described, table 5.6 shows that both σ

and σ/Range(%) remain close to constant as we pass from x(30) to x(50), allowing
the practitioner to conclude that the output is uninformative as an estimator for the

true dynamics.
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6
DISCUSSION & CONCLUSION

6.1 summary of contribution

�is thesis examines the principles and the practice of adopting a probabilistic ap-

proach to the integration of initial value problems. We have identi�ed and explored

in detail a number of di�erent strands of this concept, most of which fall under the

umbrella of probabilistic numerical methods, though we also considered approaches

which pre-date this relatively recent paradigm.

In Section 2.2 we drew attention to the fundamental di�erence in the structure of the

statistical model adopted by randomising classical numerical methods, as compared

to those approaches which assimilate numerical data directly into a functional model.

�is di�erence has been somewhat glossed over in previous treatments of the topic—

our exposition has sought to highlight it in order to make explicit the merits and

shortcomings of each scheme.

In Chapter 3 we introduced a novel extension to the work of Conrad et al. [Con16]

which generalises the one-step integrators proposed there to the multistep setting—

speci�cally, we de�ned a family of probabilistic Adams–Bashforth integrators and

proved their convergence rigorously, in the process giving bounds on the scale of the

permissible stepwise perturbations compatible with this convergence.

�e construction was motivated from a Gaussian process perspective, revealing an

interesting resemblance to several earlier works by other authors. However, we also

described the algorithm in terms of additive stepwise perturbations of the classical
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method, with the latter presentation much more similar to the randomised one-step

integrators of Conrad et al. [Con16].

Having discussed several subtle issues which arose a�er the attempt to extend this

construction to implicit multistep methods, we introduced a totally new paradigm

to �x the inconsistencies thrown up by previous approaches. �e resulting proba-

bilistic Adams–Moulton methods do not advance from step to step with an assumed

Gaussian model for the local error. �is feature simultaneously gives them the ability

to characterise the numerical error in a richer way, but also increases the cost of

implementing them.

Finally we considered the thorny issue of calibration of probabilistic methods. We

�rst adopted and then signi�cantly extended the scale-matching idea in Conrad

et al. [Con16]—the latter because their method is not directly applicable to our

newly-proposed implicit methods without modi�cation. In Chapter 5 this calibration

procedure was implemented in the context of two test problems, for both the explicit

and implicit integrators. A�er an exploration of di�erent strategies for stochastic

sampling, we then applied the new algorithms in the context of parameter inference

in the inverse problem setting.

�e simulations in Chapter 5 are intended to provide indicative results and showcase

the methods as applied to some simple problems. In particular, we note that the

calibration procedure—an essential but hitherto largely overlooked component of any

practical implementation of probabilistic numerical algorithms—can be said to work

e�ectively in the tested contexts, though it is certainly not computationally cheap.

�e potential to apply probabilistic methods to more complex problems—for instance

to higher-dimensional dynamical systems, or in settings in which the experimental

data Y is less structured—is predicated on the development of methods which are

both theoretically sound, as we have demonstrated in this thesis, but also are practical

computationally. It is not our intention to avoid the latter issue entirely, but it is not

the primary focus of our study, and for this reason we have not speci�cally highlighted

the speed benchmarks of our test simulations.

6.2 future avenues for research

In the remainder of this chapter, we make some miscellaneous observations relating

to methods we have studied, and discuss some open questions which may prove

fruitful avenues for future research.
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6.2.1 Extensions to related integrators

In Section 3.1 we summarised a range of di�erent families of iterative ODE solvers,

and made passing reference to the overall framework of ‘general linear methods’

introduced by Butcher [But06] of which these methods are special cases. Forming

randomised versions of many of these methods would be a straightforward extension

to the work presented here. �eorem 3, in which we established the conditions for

the convergence of randomised linear multistep methods, already covers several

additional named methods in widespread use.

For instance, backward di�erentiation formulae (BDF)—in which a polynomial is

constructed to interpolate past state values Zi− j (rather than function values Fi− j as in

Adams-type methods)—are of the speci�ed form, as can be observed by examining

equation (3.25) and taking as /= 0; ∑ j a j = 1; b−1 /= 0; and b j = 0 for j /= −1. �ese

methods are typically only used in their implicit form, since the explicit versions

(b−1 = 0) have poor stability properties [Hai08, §III.1]. �is immediately suggests a

discrepancy relation—analogous to that de�ned in equation (4.10)—of the form

r(z) =

z −∑s−1
j=0 β

BDF
j,s Zi− j

hβBDF
−1,s

− f (z, θ)
Straightforward modi�cations to the proof of�eorem 4 show that the probabilistic

backward di�erence formula is well-de�ned (the analysis is identical from equation

(4.17) onward), and convergent by appeal to�eorem 3. In classical numerical analysis,

BDF methods are o�en chosen for sti� problems, due to their enhanced stability

properties over Adams-type methods [Cur52]. It may be that their probabilistic

counterparts also �nd use in this context.48

More expansive generalisations would include methods which are simultaneously

multistage and multistep. �eorem 2 covers the convergence of multistage one-step

methods, though the assumption is made that perturbations ξi are only added to

the �nal estimate for Zi+1, a�er the complete calculation of all intermediate stages.

Whether these intermediate stages can also be randomised, and whether this can

be done in a multistep setting, are both open questions. (Whether they should be

randomised is also not incontrovertible.) �e lack of theoretical bounds for the error

incurred by the intermediate stages of Runge–Kutta integrators may hamper this

analysis to a degree.

In the case of multistage, multistep methods, there are also potential implications

for the consistency of the statistical model, since the results of the computations at

intermediate stages are discarded before advancing to the next iteration. If these

48We discuss the issue of stability further in Section 6.2.3.
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stages are then recalculated during the next iteration at the same time ordinates, there

is a potential con�ict between the outcomes of these two calculations, since from a

statistical viewpoint they could be considered to represent the same random variable.

To see this, consider an explicit 2-step method with one intermediate stage calculated

at each iteration. In the process of determining Zi+1, the variables Fi and Fi+1 are

conditioned upon. As in the 2-step Adams–Bashforth method, the values that these

variables take are known once we are at time ti , since they have already been calculated

in previous iterations. �e intermediate stage also requires the execution of additional

model interrogations at fractional times, which we will term Fi+1/2 and Fi−1/2. �ese

values are discarded a�er Zi+1 is determined. At the subsequent iteration, however, the

same process (whose objective now is to determine Zi+2) requires the re-interrogation

of the model at time ti+1/2. Since the calculation of this variable depends on di�erent

inputs to previously, in general a di�erent outcome would be expected.

�e statistical implications of conditioning on a random variable which has previ-

ously been discarded recalls the protracted discussion in Macdonald et al. [Mac15]

(summarised in Section 4.1.1) about whether these two random variables should be

considered as separate entities or, if not, the nature of the conditional relationship

between them.

As a result of these and other issues, we anticipate a complete extension to general

linear methods to be a potentially fraught endeavour. Despite this, we hope that future

research is able to make progress in unraveling these issues, and further generalise

the probabilistic paradigm to this wider class of algorithms.

Finally, we brie�y note the ubiquity of variable step-size methods in classical numer-

ical analysis and point out that no currently-existing probabilistic solver currently

incorporates this arrangement. Recent work by Abdulle & Garegnani [Abd18], which

randomises the step-size h in order to produce empirical uncertainty measures—akin

to those output by the methods in this thesis—is the closest in character, though

in that work the step-size is explicitly randomised rather than controlled. Control

over step-size—based on feedback from the progress of the algorithm itself—is the

approach typically favoured in the implementation of variable step-sizemethods since,

when carefully implemented, signi�cant improvements in accuracy and stability are

possible. We suggest that the future integration of this type of algorithm into the

probabilistic paradigm would hugely advance the general usefulness of the new class

of integrators we have introduced.
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6.2.2 Other extensions

At various points during the preparation of this thesis, several minor modi�ca-

tions/generalisations suggested themselves, which we were unable to investigate

to a level that justi�ed their inclusion in the main body of work. We collect these

supplementary thoughts in this section.

Firstly, the transformation g(u, η) = exp(−u2/2η2) de�ned in equation (4.7) is re-

quired in order to turn the discrepancy r(z) into a valid probability measure. (�e

fact that it does so is rigorously proved in part (i) of�eorem 4.) �is particular form

of g was chosen primarily because of its functional similarity to a the probability

density function of a Gaussian distribution, meaning that the scaling matrix H, while

not strictly-speaking a variance, can be thought of as ‘almost’ a variance. �is in turn

allowed us to employ the delta method in the design of our calibration procedure.

An obvious question to ask is if other transformations g are possible.�ere is no reason

to believe a priori that the model for the step-forward distribution is more reasonable

using this particular function g than any other—this would be just as arbitrary as

assuming that Gaussian error is universally most appropriate, a notion we have

criticised. Could there be any reason to believe that a Laplace-type transformation

g(u, η) = exp(− ∣u/η∣), or some other form entirely, is appropriate? It is certainly

the case that convergence would have to be veri�ed individually in each case, and an

entirely di�erent proof strategy would be required in seeking analogues to�eorem 4.

Secondly, we brie�y remarked upon di�erent designs of the calibration scheme in Re-

mark 4.3. As described there, our experimentation with these alternative approaches

led to problems with stability in some cases. Nevertheless, we feel that a disciplined

investigation into this topic would be a fruitful extension to our work, particularly

with a view to broadening its applicability to high-dimensional problems or to those

with signi�cantly variable length-scales across the range of integration.

A problem likely to be further out of reach is that of establishing rules of thumb for

the calibration of probabilistic integrators, so that lengthy preliminary investigations

of the type conducted in Section 5.2 are not required in advance of each application. If,

for a given probabilistic integrator, some relationship could be deduced between the

value of α∗ and some other characteristics of the method (such as its step-size, or its

error constant), and/or of the problem being solved (whether global, like its Lipschitz

constant; or local, such as stepwise error estimates or some derived function of its

Jacobian), this could obviate the need for lengthy preparatory runs. A comprehensive

investigation into this issue would either require many more test models to be consid-

ered, or some theoretical insight about the general behaviour of these methods.
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Lastly, we remark that some of the procedures described in this thesismay be amenable

to parallelisation, with the goal being a substantial reduction in ‘wall-clock’ running

time of the proposed algorithms. While iterative IVP solvers are inherently sequential,

sampling of the non-parametric step-forward distribution need not be—for example

if a rejection sampling approach is used (as posited in Section 4.4.1), samples could be

generated in parallel. Furthermore, paralellisation of the entire forward solve—using

di�erent random seeds ω on each core—would be an e�ective way of creating an

ensemble of (independent) randomised trajectories.

6.2.3 Stability

One recurring issue in the numerical solution of di�erential equations is that of the

degree of stability of the chosen method of integration. �e characterisation of stabil-

ity is in general an extremely subtle issue—several lengthy studies exist considering

this speci�c point [Hac14; Dah58]. A number of stability concepts with di�erent

de�nitions exist (see footnote 26) and these can be used to assess the properties of par-

ticular numerical methods and compare their suitability for a particular application.

For example, the ‘region of absolute stability’ [Sül03, §12] of a linear multistep method

is de�ned as a particular connected subset of the complex plane relating to the roots

of a polynomial derived from the method’s coe�cients. However, such notions can

only hope to capture some universal characteristic of the method since, by de�nition,

they do not consider the speci�c application of the method under consideration.

�e details of the de�nitions of these stability measures are not of primary concern

for us, but the key point is that in a practical sense, whether or not a method is stable

in a particular context depends heavily on the function f (⋅, θ) de�ning the dynamics

of the ODE being solved, the step-size h, the accuracy of the initialisation procedure,

and more. It is intimately related to the concept of sti�ness, several diverse de�nitions

of which were described in Section 4.2.

With reference to our work, the introduction of stochasticity to numerical methods of

this type is bound to a�ect these high-level properties. If the primary aim of deploying

probabilistic methods is to prevent unjusti�ed certainty in incorrect conclusions, then

this issue could be said to have limited consequences—at the very worst, a randomised

method su�ering from poor stability will output even wider uncertainty bands that it

otherwise would. However, if the main aim is tomodel the error of the underlying

method probabilistically, a large di�erence in the qualitative behaviour of the corre-

sponding probabilistic method has the potential to prevent this taking place at all.

In our simulations, we did occasionally come up against this issue. For higher order

multistep methods—whose classical counterparts have smaller regions of absolute

stability—it was sometimes the case that integrators calibrated by the scale-matching
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methoddescribed in Section 4.3 did not converge properlywhen applied to a particular

problem, with a particular choice of step-size, for which the unperturbed method

performed as intended. It is not clear whether amore complex perturbation procedure

(which could take account of the variation in error scale across the integration range

or across dimension; see remark 4.3) would remedy this—this would also be an

interesting avenue for further research.

A comprehensive, mathematically rigorous, analysis of the stability properties of

randomised algorithms of the type discussed here does not yet exist. Some work in

this direction has been started, for example by Lie et al. [Lie18]. Our instinct—and

the evidence of that work—suggests that establishing results of this type is a highly

non-trivial endeavour. Nevertheless we hope that the strong statistical motivation for

the methods considered in this thesis, and their position within a growing framework

of ever more e�ective probabilistic algorithms for numerical tasks, will provide the

impetus for continuing research in the future.

]
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