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Abstract

Probabilistic numerics casts numerical tasks, such the numerical solution of differ-
ential equations, as inference problems to be solved. One approach is to model the
unknown quantity of interest as a random variable, and to constrain this variable
using data generated during the course of a traditional numerical method. However,
data may be nonlinearly related to the quantity of interest, rendering the proper
conditioning of random variables difficult and limiting the range of numerical
tasks that can be addressed. Instead, this paper proposes to construct probabilistic
numerical methods based only on the final output from a traditional method. A con-
vergent sequence of approximations to the quantity of interest constitute a dataset,
from which the limiting quantity of interest can be extrapolated, in a probabilistic
analogue of Richardson’s deferred approach to the limit. This black box approach
(1) massively expands the range of tasks to which probabilistic numerics can be
applied, (2) inherits the features and performance of state-of-the-art numerical
methods, and (3) enables provably higher orders of convergence to be achieved.
Applications are presented for nonlinear ordinary and partial differential equations,
as well as for eigenvalue problems—a setting for which no probabilistic numerical
methods have yet been developed.

1 Introduction

Probabilistic numerics (PN) has attracted significant recent interest from researchers in machine learn-
ing, motivated by the possibility of incorporating probabilistic descriptions of numerical uncertainty
into applications of probabilistic inference and decision support [1, 2]. PN treats the intermediate
calculations performed in running a traditional (i.e. non-probabilistic) numerical procedure as data,
which can be used to constrain a random variable model for the quantity of interest [3]. Conjugate
Gaussian inference has been widely exploited, with an arsenal of PN methods developed for linear
algebra [4–11], cubature [12–30], optimisation [31–36], and differential equations [37–55]. However,
nonlinear tasks pose a major technical challenge to this approach, as well as to computational statistics
in general, due to the absence of explicit conditioning formulae. Compared to traditional numerical
methods, which have benefited from a century or more of sustained research effort, the current scope
of PN is limited. The performance gap is broadly characterised by the absence of certain important
functionalities—adaptivity, numerical well-conditioning, efficient use of computational resource—all
of which contribute to limited applicability in real-world settings.

This article proposes a pragmatic solution that enables state-of-the-art numerical algorithms to be
immediately exploited in the context of PN. The idea, which we term black box probabilistic numerics
(BBPN), is a statistical perspective on Richardson’s deferred approach to the limit (RDAL) [56].
The starting point for BBPN is a sequence of increasingly accurate approximations produced by a
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traditional numerical method as its computational budget is increased. Extrapolation of this sequence
(to the unattainable limit of ‘infinite computational budget’) is formulated as a prediction task, to
which statistical techniques can be applied. For concreteness, we perform this prediction using
Gaussian processes (GPs) [57], but other models could be used. Note that we do not aim to remove
the numerical analyst from the loop; the performance of BBPN is limited by that of the numerical
method on which it is based.

There are three main advantages of BBPN compared to existing methods in PN: (1) BBPN is
applicable to any numerical task for which there exists a traditional numerical method; (2) state-
of-the-art performance and functionality are automatically inherited from the underlying numerical
method; (3) BBPN achieves a provably higher order of convergence relative to a single application of
the numerical method on which it is based, in an analogous manner to RDAL. The main limitations of
BBPN, compared to existing methods in PN, are: (1) multiple realisations of a traditional numerical
method are required (i.e. one datum is not sufficient in an extrapolation task), and (2) a joint statistical
model has to be built for not just the quantity of interest (as in standard PN), but also for the error
associated with the output of a traditional numerical method. The capacity of generic statistical
models, such as GPs, to learn salient aspects of this structure from data and to produce meaningful
predictions over a range of real-world numerical problems, demands to be investigated.

The article is organised as follows: In Section 2 we recall classical RDAL. In Section 3 we lift
RDAL to the space of probability distributions, exploiting GPs to instantiate BBPN and providing
a theoretical guarantee that higher order convergence is achieved by using GPs within BBPN. In
Section 4 we present a detailed empirical investigation into BBPN, demonstrating its effectiveness on
challenging tasks that go beyond the capability of current methods in PN, while also highlighting
potential pitfalls. As part of this we perform a comparison of the uncertainty quantification properties
of BBPN against earlier approaches. A closing discussion is contained in Section 5.

2 Turning Lead into Gold

Our starting point is the celebrated observation of Richardson [56], that multiple numerical approx-
imations can be combined to produce an approximation more accurate than any of the individual
approximations. To see this, consider an intractable scalar quantity of interest q∗ ∈ R, and suppose
that q∗ can be approximated by a numerical method q that depends on a parameter h > 0, such that

q(h) = q∗ + Chα +O(hα+1) (1)

for some C ∈ R (which may be unknown) and α > 0 (which is assumed known, and called the
order of the method). Clearly q(h) converges to q∗ as h→ 0, but we also suppose that the cost of
computing q(h) increases in the same limit, with exact evaluation of q(0) requiring a hypothetically
infinite computational budget. Proposition 1 is the cornerstone of RDAL. It demonstrates that two
evaluations of a numerical method of order α can be combined to obtain a numerical method of order
α+ 1. An elementary proof of this foundational result is provided in Appendix A.
Proposition 1. Let q be a numerical method of order α, as in (1). Fix γ ∈ (0, 1) and let qγ(h) denote
the height at which a straight line drawn through the points (hα, q(h)) and ((γh)α, q(γh)) intersects
the vertical axis in R2. Then qγ is a numerical method of order α+ 1.

Now consider the natural generalisation of Proposition 1, in which we compute approximations q(hi)
along a decreasing sequence of values (hi)

n
i=1. One can then fit a smooth interpolant to the points

{(hαi , q(hi))}ni=1 (generalising the straight line through two points), then extrapolate this to h = 0, to
give an estimate for the quantity of interest. This simple idea is widely used in numerical analysis; its
potential to radically improve solution accuracy, given only a sequence of simple calculations as input,
prompted Press et al. [58, p. 922] to describe it as “turning lead into gold”. The practical success of
RDAL depends on the choice of interpolant, with polynomial interpolation being most commonly
used. Unqualified, RDAL is usually understood to refer to an order n−1 polynomial fitted to n points,
which produces a numerical method of order α+n; see Theorem 9.1 of [59]. Higher-order polynomial
extrapolation is known to perform poorly unless the values (hi)

n
i=1 are able to be chosen specifically

to mitigate Runge’s phenomenon [60], motivating the Bulirsch–Stoer algorithm [61], which instead
fits a rational function interpolant. This allows both greater expressiveness and robustness than
polynomial interpolation (though not necessarily as efficiently [58]). These methods are all situated
within the broad category of extrapolation methods in numerical analysis; a comprehensive historical
survey can be found in [62].

2



Figure 1: Richardson’s deferred approach to the limit (RDAL), applied to the method of Riemann
sums with integration bandwidth h and an oscillatory integrand f(x), displayed in the four top
panes. The bottom left pane shows linear, quadratic and cubic interpolants converging on the true
value of the integral, denoted by a blue star. The strength of RDAL is seen in the fact that the cubic
interpolant gives a better estimate than that given by the finest-grid Riemann sum with h = 0.01.
(This example is closely related to Romberg’s method.) The bottom right pane illustrates black
box probabilistic numerics (BBPN), in which a Gaussian process is fitted to the same data. The
GP specification is crucial to the performance of BBPN, and is described in Section 3.

Figure 1 presents a simple visual demonstration of RDAL, applied to the method of Riemann sums
for an oscillatory 1D integrand. While RDAL gives improved approximations, no quantification of
estimation uncertainty is provided. The only attempt of which we are aware to provide uncertainty
quantification for RDAL is due to [63], who focused on the Navier–Stokes equation and a specific
scalar quantity of interest. Here we go further, proposing the general framework of BBPN and
introducing novel methodology that goes beyond scalar quantities of interest. The right-hand pane
of Figure 1 displays the outcome of the method we are about to introduce, applied to the same
task—observe that the true value of the integral falls within the ±2σ credible set produced using
BBPN. Details of the simulations in this figure are contained in Appendix C.1.

3 Methodology

The core idea of BBPN is to model q(h) as a stochastic process Q(h) rather than fit a deterministic
interpolant as in RDAL. The distribution of the marginal random variable Q(0) is then interpreted
as a representation of the epistemic uncertainty in the quantity of interest q(0). Conjugate Gaussian
inference can be performed in BBPN, since one needs only to construct an interpolant. This means
the challenge of nonlinear conditioning encountered in PN [4] is avoided, massively extending the
applicability of PN. In addition to being able to leverage state-of-the-art numerical methods, the
BBPN approach enjoys provably higher orders of convergence relative to a single application of the
numerical method on which it is based; see Section 3.3.

3.1 Notation and Setup

Our starting point is to generalise (1) to encompass essentially all numerical tasks, following the
abstract perspective of [64]. To do so, we observe that any quantity of interest q∗ can be characterised
by a sufficiently large collection of real values q∗(t), with t ranging over an appropriate index set T .
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Definition 2. A traditional numerical method is defined as a map q : [0, h0) × T → R, for some
h0 > 0 such that, for all t ∈ T , the function h 7→ q(h, t) is continuous at 0 with limit q(0, t) = q∗(t).

For example, a (univariate) initial value problem (IVP), in which t is interpreted as time, can be
solved using a traditional numerical method q whose time step size h trades off approximation error
against computational cost. The output q(h, t) of such a method represents an approximation to the
true solution q∗(t) of the IVP, at each time t for which the solution is defined. In general, depending
on the numerical task, the index t could be spatio-temporal, discrete, or even an unstructured set,
while the meaning of the index h will depend on the numerical method.

Definition 2 thus encompasses, among other things: (1) adaptive integrators for time-evolving partial
differential equations (PDEs), where h > 0 represents a user-specified error tolerance, and the
spatio-temporal domain of the solution is indexed by T ; (2) iterative methods for approximating the
singular values of a d × d matrix, where for example h := w−1 with w the number of iterations
performed, and the ordered singular values are indexed by T = {1, . . . , d}; and (3) the simultaneous
approximation of multiple related quantities of interest, where T indexes not only the domain(s) on
which the individual quantities of interest are defined, but also the multiple quantities of interest
themselves (this situation arises, for example, in inverse problems that are PDE-constrained [65]).

The perspective in Definition 2 is abstract but, as these examples make clear, it will typically only be
possible to compute q at certain input values (such as h = w−1 forw ∈ N, or for just a finite collection
of inputs t if the index set T is infinite), and furthermore each evaluation is likely to be associated
with a computational cost. Thus complete information regarding the map q : [0, h0)× T → R will
not be available in general, and there will therefore remain epistemic uncertainty in its complete
description. Our aim in Section 3.2, in line with the central philosophical perspective of PN, is to
characterise this uncertainty using a statistical model.

3.2 Black Box Probabilistic Numerics

The proposed BBPN approach begins with a prior stochastic process Q and constrains this prior
using data D. Concretely, we assume that the real values q(hi, ti,j) are provided at a finite set of
resolutions h1 > · · · > hn > 0 and distinct ordinates ti,1, . . . , ti,mi

∈ T . Note that the number of
t-ordinates mi can depend on hi. Our dataset therefore contains the following information on q:

D := {(hi, ti,j , q(hi, ti,j)) : i = 1, . . . , n; j = 1, . . . ,mi} (2)

The stochastic process obtained by conditioningQ on the datasetD, denotedQ|D, implies a marginal
distribution for Q(0, ·), which we interpret as a statistical prediction for the unknown quantity of
interest q∗(·). In order for uncertainty quantification in this model to be meaningful, one either
requires expert knowledge about the numerical method that generated D, or one must employ a
stochastic process that is able to adapt to the data, so that its predictions can be calibrated.

Our goal is to specify a stochastic process model Q(h, t) that behaves in a desirable way under
extrapolation to h = 0. To this end, we decompose

Q(h, t) = Q∗(t) + E(h, t) (3)

where Q∗(t) is a prior model for the unknown quantity of interest q∗(t), and E(h, t) is a prior model
for the error of the numerical method. It will be assumed that Q∗ and E are independent (denoted
Q∗ ⊥⊥ E), meaning that prior belief about the quantity of interest is independent of prior belief
regarding the performance of the numerical method. (This assumption is made only to simplify the
model specification, but if detailed insight into the error structure of a numerical method is available
then this can be exploited.) Compared to the existing PN methods cited in Section 1, a prior model
for the error E is an additional requirement in BBPN.

The error E(h, t) is assumed to vanish1 as h → 0, meaning that a stationary stochastic process
model for E(h, t), and hence for Q(h, t), is inappropriate, and can result in predictions that are both
severely biased as well as under-confident; see Appendix C.2. In the next section, we propose a
parsimonious non-stationary GP model for Q(h, t) of the form (3), which combines knowledge of

1This statement covers several potentially subtle notions from numerical analysis such as well-posedness of
the problem and numerical stability of the algorithm; these are studied in detail in their own right in the literature,
and for our purposes it suffices to assume that the error behaves well in the limit.
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the order of the numerical method (only) with data-driven estimation of GP hyperparameters. This
setting is practically relevant—the order of a numerical method is typically one of the first theoretical
properties that researchers aim to establish while, conversely, for more complex numerical methods
the order may actually be the only salient high-level error-characterising property that is known, and
thus represent the limit of mathematical insight into the method.

3.3 Gaussian Process BBPN

Gaussian processes provide a convenient model for Q∗ and E, since they produce an explicit form
for the conditional Q|D. The details of conjugate Gaussian inference are standard (see e.g. [57]) and
so relegated to Appendix B.1; our focus here is on the specification of GP priors for Q∗ and E.

The notation Q ∼ GP(µQ, kQ) will be used to denote that Q is a GP with mean function µQ and
covariance function kQ. With no loss of generality, in what follows we consider centred processes (i.e.
µQ = 0). It will be assumed that T = T1 × · · · × Tp, with each Ti either a discrete or a continuous
subset of a Euclidean space, with the Euclidean distance between elements ti, t′i ∈ Ti being denoted
‖ti − t′i‖. (Typical applications involve small p; for example, the domain of a spatio-temporal PDE is
typically decomposed as T = T1 × T2 where T1 indexes time and T2 indexes all spatial dimensions,
so that p = 2.)

Prior for Q∗: In the absence of detailed prior belief about q∗, we consider the following default
prior model. Let G ∼ GP(0, σ2ρGkG), Z = (Z1, . . . , Zv) ∼ N (0, σ2I), and let Z ⊥⊥ G. Let
b1, . . . , bv be a finite a collection of basis functions and set b(t) = (b1(t), . . . , bv(t))

>. Then set
Q∗(t) = Z · b(t) +G(t)

where σ2, ρG > 0 are parameters to be estimated. The basis b will be problem-specific and could be a
polynomial basis, Fourier basis, or any number of other bases depending on context. The case v = 1
with a constant intercept is closely related to ordinary kriging and the case v > 1 is closely related
to universal kriging [66, p. 8]. The apparent redundancy in the parameterisation due to the product
σ2ρG will be explained later. Using the notation t = (t1, . . . , tp), we consider a tensor product
covariance model kG(t, t′) =

∏p
i=1 kG,i(ti, t

′
i), kG,i(ti, t′i) = φi (‖ti − t′i‖/`t,i), for some radial

basis functions φi, scaled to satisfy φi(0) = 1, and length-scale parameters `t,i > 0 to be estimated.

Prior for E: The process E(h, t) is a model for the numerical error q(h, t) − q∗(t), t > 0,
which may be highly structured. A flexible prior model is therefore required. Moreover the error
will, by definition, depend on the order of the numerical method; for successful extrapolation we
must therefore encode this order into the model for E. It was earlier argued that a stationary GP is
inappropriate, since the error is assumed to beO(hα). However, we observe that h−α(q(h, t)−q∗(t))
is O(1), suggesting that this quantity can be modelled using a stationary GP. We therefore take
E ∼ GP(0, σ2ρEkE), where ρE > 0 is a parameter to be estimated, and

kE((h, t), (h′, t′)) = (hh′)αψ (|h− h′|/`h) · kG(t, t′) (4)
for a radial basis function ψ, scaled to satisfy ψ(0) = 1, and a length-scale parameter `h > 0 to be
estimated. Note how (4) separates the h and t dependence of E in the prior, and adopts the same
covariance model kG that was used to model the t dependence of G. This can be motivated by the
alternative perspective that follows from observing that Q is a GP with covariance function

kQ((h, t), (h′, t′)) = σ2

{
b(t) · b(t′) + ρGkG(t, t′)

(
1 + ρE

kE((h, t), (h′, t′))

kG(t, t′)

)}
(5)

where kE/kG is a kernel only depending on h. Written this way, the model is seen to perform
universal kriging over T with a covariance adjusted by a multiplicative error arising from non-zero
values of h.

Higher-order convergence: The GP specification just described is not arbitrary; it ensures that
the higher-order convergence property of RDAL is realised in BBPN. Consider again the setting in
Proposition 1. Suppose that there exist L, ε0 > 0 and β ∈ (0, 1] such that |1− ψ(ε)| ≤ Lεβ for all
ε ∈ [0, ε0). Then the posterior mean E[Q(0)|Dh] satisfies |q∗−E[Q(0)|Dh]| = O(hα+β) as h→ 0.
Thus if ψ is Lipschitz (i.e. β = 1), BBPN achieves the same higher-order convergence, α + 1, as
RDAL. In this context we recall that any Matérn covariance function of smoothness at least 1/2 is
Lipschitz. The proof is provided in Appendix B.2.
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Model parameters: The free parameters of our prior model, σ2, ρG, ρE , `h, and the `t,i for
i = 1, . . . , p, are collectively denoted θ. For all experiments in this article, θ was set using the
maximum likelihood2 estimator θML. Our choice of parameterisation ensures that the maximum
likelihood estimate for the overall scale σ2, denoted σ2

ML, has a closed form expression in terms of the
remaining parameters. This is analytically derived in Appendix B.3 and can be plugged straight into
the likelihood. Gradients with respect to the remaining 3 + p parameters are derived in Appendix B.3,
and gradient-based optimisation of the log-likelihood was implemented for the remaining parameters.
Remark 3. GP interpolation, as with classical RDAL, is not parameterisation invariant. Thus some
care is required to employ a parameterisation of h that is amenable to the construction of a GP
interpolant. The effect of differing parameterisations is explored in Appendix C.2.
Remark 4. The classical definition of RDAL presupposes that, in order to employ the method, the
order α must be known a priori [67]. However if α is not known, the probabilistic perspective affords
us the opportunity to learn α as an additional parameter in the statistical model—a procedure with
no classical analogue. The feasibility of learning α is explored in Section 4.2.

Code: Software for BBPN, including code to reproduce the experiments in Section 4, can be
downloaded from github.com/oteym/bbpn.

4 Experimental Assessment

This section reports a rigorous experimental assessment of BBPN. Firstly, Section 4.1 demonstrates
that BBPN is competitive with existing PN methods in the context of ordinary differential equations
(ODEs). This result is somewhat surprising, given the black box nature of BBPN compared to the
bespoke nature of existing PN methods for ODEs. Secondly, in Section 4.2 we demonstrate the
versatility of BBPN by applying it to the nonlinear problem of eigenvalue computation, for which no
PN methods currently exist. Finally, in Section 4.3 we use BBPN to provide uncertainty quantification
for state-of-the-art numerical methods that aim to approximate the solution of nonlinear PDEs.

Default Settings: We use Matérn(1/2) kernels for φi and ψ, i.e. φi(ti, t′i) = exp(−‖ti − t′i‖/`t,i),
and similarly mutatis mutandis for ψ. These kernels impose a minimal continuity assumption on q
without additional levels of smoothness being assumed. Sensitivity of results to the choice of kernel
is investigated in Appendix C.2.

Performance Metrics: PN is distinguished from traditional numerical analysis by its aim to
provide probabilistic uncertainty quantification, but nevertheless approximation accuracy remains
important. To perform an assessment on these terms, we considered two orthogonal metrics. Firstly,
we compute the error of the point estimate (mean), denoted W := ‖E[Q(0, ·)|D]− q∗(·)‖, where
the norm is taken over t ∈ T ′ where T ′ is either T itself or a set of representative elements from
T . Secondly, and most importantly from the point of view of PN, we consider the surprise S :=
‖C[Q(0, ·)|D]−1/2(E[Q(0, ·)|D)] − q∗(·))‖, where C[Q(0, ·)|D] denotes the posterior covariance
matrix. If the true quantity of interest q∗ was genuinely a sample from Q(0, ·)|D, then S2 would
follow a χ2 distribution with |T ′| degrees of freedom. This observation enables the calibration of a
PN method to be assessed [68]. Both metrics naturally require an accurate approximation to q∗ to act
as the ground truth, which is available using brute force computation in Sections 4.1 and 4.2 but not
in Section 4.3. The role of Section 4.3 is limited to demonstrating BBPN on a problem class that is
challenging even for state-of-the-art methods.

4.1 Ordinary Differential Equations

The numerical solution of ODEs has received considerable attention in PN, with several sophisticated
methods available to serve as benchmarks. Here we consider numerical solution of the following
Lotka–Volterra IVP, a popular test case in the PN literature:

dy

dt
= f(t,y) =

[
0.5y1 − 0.05y1y2

−0.5y2 + 0.05y1y2

]
, y(0) =

[
20
20

]
2Alternative approaches, such as cross-validation, could also be used; see Chapter 5 of [57]. Our choice of

maximum likelihood was motivated by the absence of any degrees of freedom (such as the number of folds of
cross-validation), which permits a more objective empirical assessment.
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Figure 2: Ordinary differential equations. Top: Output from three existing PN algorithms [39–41]
and BBPN, applied to the Lotka–Volterra IVP. Bottom left: The error log2W at the final time
point tend = 20, as a function of the time step size h. Bottom right: The surprise log2 S at
tend = 20, with the central 95% probability band of a χ2

2 random variable shaded. Methods
shown with (where applicable) their order: Chkr. [39]; Conr. O1 [38]; Teym. O2 [41]; Scho. O1
[40]; Tron. O2 [47]; Bosch O2 [55]; BBPN O1 & O2; and (traditional) Euler.

The aim in what follows is to approximate the quantity of interest q∗ = y(tend) for tend = 20. The
top row of Figure 2 displays output from three distinct PN methods due to [39–41], as well as BBPN.
(For these plots the coarse step-size h = 0.5 was used, so the probabilistic output can be easily
visualised.) In each case, these methods treat a sequence of evaluations of the gradient field f as data
which are used to constrain a random variable model for the unknown solution of the ODE. Their
fundamentally differing character makes direct comparisons challenging, particularly if we are to
account for computational cost. However, each algorithm has a recognisable discretisation parameter
h, so it remains instructive to study their h→ 0 limit. (In most cases h represents a time step size,
but the method of [55] is step-size adaptive; in this case h is an error tolerance that is user-specified.)
The methods of [38], [39], and [41] require parallel simulations to produce empirical credible sets,
and thus have a significant computational cost. The methods of [40], [47] and [55] are based on
Gaussian filtering and are less computationally demanding, though in disregarding nonlinearities the
description of uncertainty they provide is not as rich. Interestingly, the output from [39] becomes
overconfident as h → 0, with S2 being incompatible with a χ2

2 random variable, while the output
from [40] becomes somewhat pessimistic in the same limit. Aside from these two outputs, the other
PN methods considered appear to be reasonably calibrated.

To illustrate BBPN, our data consist of the final states produced by either an Euler (order 1) or an
Adams–Bashforth (order 2) algorithm, which were performed at different resolutions {hi = 2−i, i =
1 . . . , 6}. The dataset3 is augmented cumulatively, so that for i = i′, all data generated by runs
1, . . . , i′ are used. The finest resolution in each case, hi, is simply denoted h. For this experiment
we use a prior with constant intercept, i.e. v = 1 and b1(t) = 1. The BBPN output, shown in the
bottom row of Figure 2, is observed to be calibrated, and the (order 2) output provides the most
accurate approximation among all calibrated PN methods considered. Note in particular how BBPN
accelerates the convergence of the Euler method from first order to second order, akin to RDAL.

3In this experiment the two components of q∗ were treated as a priori independent, but this is not a specific
requirement of BBPN and dependence between outputs can in principle also be encoded into the GP model.
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Figure 3: Eigenvalue problems. Left and centre: QR algorithm. Right: Shifted power method.
Details of each simulation are given in the main text. All plots show red shaded ±2σ credible
intervals, numerical data as black circles, and true eigenvalues as blue stars.

In terms of computational cost, BBPN requires running a traditional numerical method at different
resolutions, as well as the fitting of a GP. In this experiment, the computational cost of BBPN was
intermediate between the filtering approach of [40] and the sampling approaches of [39] and [41].
Further details, including the sources of all these codes, are given in Appendix C.3.

4.2 Eigenvalue Problems

The calculation of eigenvalues is an important numerical task that has not yet received attention in
PN. In this section we apply BBPN to (1) the QR algorithm for matrix eigenvalue discovery, and (2)
a cutting-edge adaptive algorithm for the tensor eigenproblem, called the shifted power method [69].
In these examples, the order α is unknown and we append it to θ as an additional parameter to be
estimated using maximum likelihood.

QR Algorithm: Take T = {1, . . . , n}. Let w ∈ N and define h := w−1. Given a matrix
A ∈ Rn×n, its Schur form A∞ is approximated by matrices Aw := Rw−1Qw−1, where Rw−1 and
Qw−1 arise as a result of performing a QR decomposition on Aw−1 = Qw−1Rw−1, and where
A0 := A. Then q(h, ·) is the vector diag(Ah−1), and q∗ = diag(A∞) is the vector of eigenvalues
of A. As a test problem, whose eigenvalues are available in closed form (see Appendix C.4), we
consider the following family of sparse matrices that arise as the discrete Laplace operator in the
solution of the Poisson equation by a finite difference method with a five-point stencil. Let the l × l
matrix B and the ml ×ml matrix A be defined by

B =


4 −1
−1 4 −1

. . . . . . −1
−1 4

 , A =


B −I
−I B −I

. . . . . . −I
−I B

 .

BBPN output for this problem is displayed in Figure 3. In the left-hand pane, we take l = 5,m = 2
and perform 5 QR iterations, displaying all 10 eigenvalues. In the centre pane, we take l = 10,m = 10
and perform 15 iterations. For clarity, this pane only displays the largest few eigenvalues of this
100× 100 matrix, and we also show a zoomed-in crop to better demonstrate the extrapolation quality.
Both examples show the convergence of Q(h, ·) to q∗(·) as w →∞. Recall that α is inferred in these
simulations —the maximum likelihood values were, respectively, 1.0186 and 1.0167.

The extrapolation performed by our GP model is seen visually to be effective and almost all true
eigenvalues are contained within the±2σ credible intervals plotted. For comparison, in Appendix C.2
we contrast the result of using a stationary GP model (i.e. α = 0). The extrapolating properties of
that GP are immediately seen to be unsatisfactory, and we support this observation by examining
the calibration of the two approaches, in a similar manner to in Section 4.1. This analysis strongly
supports our proposed GP specification in Section 3.3.
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Shifted Power Method: This iterative algorithm, due to [69] and implemented in [70], finds
(random) eigenpairs of higher-order tensor systems, and we include it to demonstrate BBPN on a
challenging problem in linear algebra. For A a symmetric mth-order n-dimensional real tensor, and
x an n-dimensional vector, define

(
Axm−1

)
i1

:=

n∑
i2=1

· · ·
n∑

im=1

ai1i2...imxi2 . . . xim , i1 = 1, . . . , n,

and say that λ ∈ R is an eigenvalue of A if there exists x ∈ Rn such that Axm−1 = λx and x>x = 1.
Here we take n = m = 6 and produce a random symmetric tensor using the create_problem
function of [70]. Two parameterisations of q were considered; h := w−1 and h := w−2, where
w denotes the number of iterations performed, with results based on the latter parameterisation
presented in the right-hand pane of Figure 3. (The maximum likelihood value for α in this example
was 1.3318.) It can be seen that, after 5 iterations, BBPN is more accurate than each of the individual
approximations on which it was trained. The choice of parameterisation affects the performance of
BBPN, an issue we explore further in Appendix C.2.

In this example there is no additional computational cost to BBPN in the data collection stage, since
the dataset is generated during a single run of an iterative numerical method. Therefore the only
overhead is due to fitting the GP; though for this example this cost is itself negligible. All details,
including a systematic assessment of error W and surprise S as h is varied for both the QR algorithm
and the shifted power method, are given in Appendix C.4.

Remark 5. In this section we have implicitly modelled eigenvalues as a priori independent, for
simplicity of exposition. Heuristics from random matrix theory suggest that, when treated probabilis-
tically, eigenvalues may be better modelled with some non-trivial dependence structure. We note that
this additional structure can be easily incorporated into the prior GP model for BBPN.

4.3 Partial Differential Equations

To demonstrate the potential of BBPN on a challenging problem for which state-of-the-art numerical
methods are required, we consider numerical solution of the Kuramoto–Sivashinsky equation [71, 72]

∂tu+ ∂4
xu+ ∂2

xu+ u∂xu = 0. (6)

This equation is used to study a variety of reaction-diffusion systems, producing complex spatio-
temporal dynamics which exhibit temporal chaos—the characteristics of which depend strongly on
the amplitude of the initial data and the domain length. We consider a flat initial condition u(x, 0) =
exp(−0.01x2) with periodic boundary condition on the domain 0 ≤ x ≤ 1, and numerically solve to
t = 200. Our quantity of interest is therefore u(x, 200) for the domain x ∈ [0, 1].

To obtain numerical solutions to (6) we transfer the problem into Fourier space and apply the popular
fourth-order time-differencing ETD RK4 numerical scheme; see Appendix C.5 and [73]. ETD RK4
was designed to furnish fourth-order numerical solutions to time-dependent PDEs which combine low-
order nonlinear terms with higher-order linear terms, as in (6). Computing accurate approximations
to the solution of chaotic, stiff PDEs is a challenging problem for existing PN methods because
computationally demanding high-order approximations across both spatial and temporal domains are
required. Here, we assess BBPN applied to three sequences of five runs of ETD RK4, with minimum
temporal step size h = δt and, for simplicity, a fixed spatial step size δx = 0.001 throughout.4 A
reference solution was generated by taking h = 0.0005, but this cannot of course be guaranteed to be
an accurate approximation to the true solution of (6).

Results shown in Figure 4 are encouraging; not only can accurate approximations be produced, but
the associated uncertainty regions appear to be reasonably well calibrated, insofar as the magnitude
of the uncertainty is consistent with the magnitude of the discrepancy between the posterior mean
and the reference solution. Full details of these simulations are contained in Appendix C.5.

4For the h = 0.002 simulation in Figure 4, we have hi ∈ {0.002, 0.005, 0.01, 0.02, 0.05}, for the h =
0.005 simulation we have hi ∈ {0.005, 0.01, 0.02, 0.05, 0.1}, and for the h = 0.01 simulation we have
hi ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
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Figure 4: Partial differential equations. Left: Solution to the Kuramoto–Sivashinsky equation.
Right: Approximation of the solution at the final time point (t = 200) using BBPN, based on
minimum time step sizes h ∈ {0.002, 0.005, 0.01}. Posterior mean (blue) and credible regions
(shaded) are displayed. A reference solution (dashed black) is obtained by taking h = 0.0005.

5 Discussion

This paper presented black box probabilistic numerics, a simple yet powerful framework that bridges
the gap between existing PN methods and the numerical state-of-the-art. Positive results were
presented on the important problems of numerically approximating ODEs, eigenvalues, and PDEs.
Our main technical contribution is a probabilistic generalisation of Richardson’s deferred approach to
the limit, which may be of independent interest.

The main drawbacks, compared to existing PN, are a possibly increased computational cost and the
additional requirement to model the error of a traditional numerical method. Compared to existing
PN, in which detailed modelling of the inner workings of numerical algorithms are exploited, only
the order of the numerical method is used in BBPN (and we can even dispense with that, as in
Section 4.2), which may reduce its expressiveness in some settings. However, despite the black
box approach, BBPN was no less accurate than existing PN in our experiments, and in fact the
higher-order convergence property may enable BBPN to out-perform existing PN.

Some avenues for further research (that we did not consider in the present article) include the use of
more flexible and/or computationally cheaper alternatives to GPs, the adoption of principles from
experimental design to sequentially select resolutions hi given an overall computational budget, and
the simultaneous use of different traditional (or even probabilistic) numerical methods within BBPN.
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Supplementary Material

These appendices contain supplementary material for the paper Black Box Probabilistic Numerics.

A Proof of Proposition 1

The equation of the straight line through two points (x1, y1) and (x2, y2) is given by

y − y1

x− x1
=
y2 − y1

x2 − x1
.

Substituting the points (hα, q(h)) and ((γh)α, q(γh)), and taking x = 0, we have

y = q(h)− q(γh)− q(h)

γα − 1
.

By the assumption that q is of order α, we have the expansions q(h) = q∗ + Chα +O(hα+1) and
q(γh) = q∗+C(γh)α +O(hα+1), and then by substitution and straightforward cancellation we find

y = q∗ +O(hα+1).

Therefore the y-intercept of the line is an approximation of q∗ of order α+ 1.

B Gaussian Processes for BBPN

This appendix contains full details of how analytic conditioning formulae are obtained and how
maximum likelihood estimates are calculated.

B.1 Conditioning Formulae

It will be convenient to introduce lexicographic ordering, where the indices

{(i, j) : j = 1, . . . ,mi, i = 1, . . . , n} (7)

are ordered first by i and then, for indices with the same i, by j. Let h(l) and t(l) denote, respectively,
the values of hi and ti,j corresponding to the l’th ordered pair (i, j) in (7). Let q represent a column
vector of length m :=

∑n
i=1mi, with entries q l := q(h(l), t(l)) in lexicographic order.

From (5), the prior model for Q described in Section 3.3 has covariance function

kQ((h, t), (h′, t′)) = σ2[b(t) · b(t′) + ρGkG(t, t′) + ρEkE((h, t), (h′, t′))], (8)

where the additivity follows from the assumptions Q∗ ⊥⊥ E and Z ⊥⊥ G. Let KQ be an m ×m
matrix and kQ(h, t) be an m× 1 column vector with entries of the form

(KQ)l,l′ := kQ((h(l), t(l)), (h(l′), t(l′))) , (kQ(h, t))l := kQ((h(l), t(l)), (h, t)). (9)

Then standard Gaussian conditioning formulae (eg. Equation 2.19 in [57]) demonstrate that the
conditional process Q|D has mean and covariance functions

µQ|D(h, t) = kQ(h, t)>K−1
Q q (10)

kQ|D((h, t), (h′, t′)) = kQ((h, t), (h′, t′))− kQ(h, t)>K−1
Q kQ(h′, t′) (11)

The mean and covariance functions of the marginal process Q(0, ·)|D are extracted by setting h equal
to 0 in Equations (10) and (11).

B.2 Proof of Higher-Order Convergence Result in Section 3.3

For a scalar quantity of interest, the full covariance function in (5) is

kQ(h, h′) = a1 + a2(hh′)αψ

(
|h− h′|
`h

)
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for certain positive constants a1 and a2. For γ ∈ [0, 1], denote

ψh = ψ

(
(1− γ)h

`h

)
.

Then the conditional mean at h = 0, given the data Dh = {(h, q(h)), (γh, q(γh))}, is

E[Q(0)|Dh] =

(
q(h)
q(γh)

)>(
a1 + a2h

2α a1 + a2γ
αψhh

2α

a1 + a2γ
αψhh

2α a1 + a2γ
2αh2α

)−1(
a1

a1

)
=

q(h)γα(γα − ψh) + q(γh)(1− γαψh)

a1a2(1− 2γαψh + γ2α)h2α + a2
2γ

2α(1− ψ2
h)h4α

a1a2h
2α

=
q(h)γα(γα − ψh) + q(γh)(1− γαψh)

a1(1− 2γαψh + γ2α) + a2γ2α(1− ψ2
h)h2α

a1.

Inserting q(h) = q∗+Chα+O(hα+1) and q(γh) = q∗+Cγαhα+O(hα+1) in the above equation
yields

∣∣q∗ − E[Q(0)|Dh]
∣∣ = q∗

∣∣∣∣∣1− γα(γα − ψh) + 1− γαψh
a1(1− 2γαψh + γ2α) + a2γ2α(1− ψ2

h)h2α
a1

∣∣∣∣∣
+

∣∣∣∣∣ γα(γα − ψh) + γα(1− γαψh)

a1(1− 2γαψh + γ2α) + a2γ2α(1− ψ2
h)h2α

∣∣∣∣∣|C| a1h
α

+

∣∣∣∣∣ γα(γα − ψh) + 1− γαψh
a1(1− 2γαψh + γ2α) + a2γ2α(1− ψ2

h)h2α

∣∣∣∣∣a1O(hα+1)

≤ q∗
∣∣∣∣∣ a2γ

2α(1− ψ2
h)

a1(1− 2γαψH + γ2α) + a2γ2α(1− ψ2
h)h2α

∣∣∣∣∣h2α

+

∣∣∣∣∣ γα(1 + γα)

1− 2γαψh + γ2α

∣∣∣∣∣|C| |1− ψh|hα
+O(hα+1).

It follows from the Hölder assumption |1 − ψ(ε)| ≤ Lεβ that |1 − ψh| = O(hβ). Therefore the
second term, which dominates the right-hand side, is of order O(hα+β). This concludes the proof.

B.3 Maximum Likelihood Estimation

The parameters θ of the covariance function kQ are estimated from data using maximum likelihood.
Recall that (with α known) θ consists of the parameters σ, ρG, ρE , `h, and the `t,i for i = 1, . . . , p.
This parameterisation is deliberately chosen to enable the maximum likelihood estimator σML to be
computed as an explicit function of the remaining components of θ. It is convenient to express

kQ((h, t), (h′, t′)) = σ2kQ((h, t), (h′, t′))

where kQ((h, t), (h′, t′)) is (8) with σ = 1. Analogously define KQ as in (9) but with σ = 1. The
log-likelihood of observing the dataset D in (2) under the model for Q defined in (3) can then be
expressed as

L(θ) = −m
2

log(2π)−m log σ − 1

2
log |KQ| −

1

2σ2
q>K

−1

Q q, (12)

where we note that KQ does not depend on σ but can depend on all the other components of θ. In the
case of the overall amplitude parameter σ, it is possible to obtain an analytic expression for the value
σML by differentiating and setting ∂L/∂σ = 0 [74]. This gives

σ2
ML =

q>K
−1

Q q

m
(13)
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Figure 5: Comparison of stationary (4), on left, and non-stationary (16), on right, covariance
functions for the QR algorithm example detailed in Section 4.2.

Plugging σ = σML into (12) gives

L(θ|σ = σML) = −m
2

log(q>K
−1

Q q)− 1

2
log |KQ|+ C (14)

where C is a constant in θ. From here, we employ numerical optimisation to maximise (14) over the
remaining 3 + p degrees of freedom in θ.

It is important to ensure that numerical optimisation is successful, otherwise conclusions provided
by BBPN could be an artefact of failure of the numerical optimisation method. To this end, we
undertake robust gradient-based optimisation on (14), using MATLAB’s packaged fmincon routine.
This requires calculation of the gradients of (14) and explicit formulae will now be provided.

By differentiating (14) we have

∂θL(θ|σ = σML) =
m

2

q>K
−1

Q (∂θKQ)K
−1

Q q

q>K
−1

Q q
− 1

2
tr
(
K
−1

Q (∂θKQ)
)

(15)

Define the matrices

(B)l,l′ := b(t(l)) · b(t(l′)) , (KG)l,l′ := kG(t(l), t(l′)) , (KE)l,l′ := kE((h(l), t(l)), (h(l′), t(l′))).

Then KQ = B + ρGKG + ρEKE , and it follows that

∂ρGKQ = KG , ∂`hKQ = ρE∂`hKE ,

∂ρEKQ = KE , ∂`t,iKQ = ρG∂`t,iKG + ρE∂`tKE

The low-level terms such as ∂`hKE can readily be computed by hand and will depend on the radial
basis functions φi and ψ adopted in KG and KE . Note that if α > 0 is treated as unknown and
appended to the parameter vector θ, as in Section 4.2, a similar calculation can be performed to obtain
the gradient with respect to α of (14).

The convergence of this gradient-based optimisation approach to a minimum of L(θ) is verified
empirically in Appendix C.3.2.

C Details of Empirical Assessment

This appendix contains full details for all experiments described in the main text.

C.1 Riemann Sum Illustration in Figure 1

Figure 1 considers the function f(x) = sin2(4πx) + exp(x)− 5
2x

4 + 1
2 cos(16πx) + 1

4 cos(20πx).
The quantity of interest q∗ is the integral

∫ 1

0
f(x) dx, which has the exact value (e− 1) ≈ 1.71828.
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Figure 6: Comparison of different parameterisations for h relative to the number of iterations κ
of the QR algorithm; h := κ−1/2 (left); h := κ−2 (right)

BBPN was applied to the method of Riemann sums. The convergence of this method is first order,
and we set α = 1 accordingly. We choose a range of step-sizes h between 0.01 an 0.08, with the
Riemann sum approximations plotted in the left pane of Figure 1. Hyperparameters of the GP were
set using maximum likelihood approach, as described in Appendix B.3.

C.2 Sensitivity to Prior Specification

In this section we consider the effect of varying several of the choices made during the specification
of our prior model. The suitability of our non-stationary GP model is considered in Appendix C.2.2.
The effect of the choice of parametrisation for h is considered in Appendix C.2.2. The choice of
the kernel functions φi and ψ is discussed in Appendix C.2.3. Finally, the nature and number of the
finite-dimensional basis terms bi is discussed in Appendix C.2.4. In each case we explore the impact
of these aspects of the prior specification by reproducing figures from the main text under different
settings within the GP model.

C.2.1 Stationary / Non-Stationary Error Model

Since the error E(h, t) is assumed to vanish in the limit h → 0, and since its scale is assumed to
depend on the order α of the underlying numerical method, we specified a non-stationary GP in (4).
For the QR algorithm example in Section 4.2, we now contrast this with the same analysis performed
with the stationary GP whose covariance function is

k̃E((h, t), (h′, t′)) = ψ (|h− h′|/`h) · kG(t, t′) (16)

i.e. setting α = 0 in (4).

From Figure 5 (right), we see that the extrapolation is extremely poor when a stationary GP is used.
Moreover, the use of a stationary GP leads in this case to over-confident predictions, with the true
eigenvalues belonging outside of the ±2σ credible intervals. This provides strong support for the use
of the non-stationary GP that we propose in the main text.

C.2.2 Parameterisation of h

The choice of parameterisation of h is also crucial to the operation of BBPN. While it is sometimes
the case that an ‘obvious’ parameterisation exists (such as the step-size in a time-stepping method,
where the order α specifically refers to this quantity; or the overall tolerance level of a numerical
method) this is, unfortunately, not always true. If some heuristic reasoning for determining this
parameterisation is not available, we recommend some prior experimentation and comparison with
calibration metrics such as surprise, introduced in Section 4.
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Figure 7: Comparison of different kernel types for the radial basis functions φi and ψ. Matérn
1/2 (left); Mateérn 3/2 (centre); and Gaussian (right).

For the QR algorithm example in Section 4.2, Figure 6 shows the effect of replacing the parame-
terisation h := κ−1 (as in Figure 3) with h := κ−1/2 and h := κ−2. Although BBPN continues to
work, to an extent, with these alternative parametrisations, its predictive performance is somewhat
diminished.

C.2.3 Choice of Radial Basis Functions φi and ψ

For all simulations in this article we specified Matérn 1/2 kernels for φi and ψ. The motivation for
this, stated in the preliminary notes in Section 4, is to impose the minimal continuity assumption on q
but not to assume additional levels of smoothness where this cannot be justified a priori.

Figure 7 shows the effect of specifying instead Matérn 3/2 or Gaussian kernels for φi and ψ in the
Riemann sum test problem in Figure 1, contrasting with the Matérn 1/2 kernel used there. In all
cases, the same process of gradient-based optimisation was employed to automate the setting of
the kernel hyperparameters. The additional smoothness of the mean interpolant is clearly visible in
the higher Matérn and Gaussian cases, but note also the difference in scale of the ±2σ region. In
particular, the use of smoother kernels is associated with higher confidence in the predictive output,
with the Gaussian kernel producing the largest value of the surprise S2 (though this was still within
the central 95% region for a χ2 distribution, so we do not reject the hypothesis that the BBPN output
is calibrated). On balance we err on the side of caution and recommend the Matérn 1/2 kernel for
applications of BBPN.

C.2.4 Choice of Basis Functions bi

In this section we demonstrate the purpose of including basis functions bi in the model for G(t). To
do so, we plot the output of the BPPN procedure for the PDE example in Figure 4, since this example
has non-trivial ‘t’ domain (though the variable called t in the model definition in Section 3 is in fact
called x here). The effect of including a constant basis function (i.e. v = 1 and b1(t) = 1) is to allow
the model a non-zero mean in t. For this example, the dynamics are mostly above the 0 level and
even a simple global mean would be more likely between 1 and 2. Omitting the basis function (i.e.
v = 0), as shown in the bottom pane of Figure 8, inflates the covariance to compensate for this misfit,
and in this case results in an underconfident model.

In this example, it is unlikely that the additional inclusion of higher-order polynomial basis functions
would be of use. Indeed our experiments showed this. However the oscilliating nature of the dynamics
across the range of t suggests a Fourier basis may be an appropriate mean model. Ideas along these
lines are partially explored in [75], and a fuller investigation in the context of BBPN will be the
subject of future work.
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Figure 8: Comparison of the inclusion and exclusion of the first polynomial basis function (top:
v = 1, bottom: v = 0) for the model in Section 4.3.

C.3 Ordinary Differential Equations

Here we provide full details for the ODE experiment in the main text. In Appendix C.3.1 we explain
how all the probabilistic ODE solvers that we considered in the main text were implemented. Then,
in Appendix C.3.2, we present evidence that the gradient-based optimisation approach we employed
to estimate the GP hyperparameters in BBPN has successfully converged.

C.3.1 Details of Implementation

In this section we describe in detail the sources and licences of the codes, as well as the settings used,
to perform the comparison experiments in Section 4.1. These codes are from different sources, span
several years in release date, and are coded in different languages. They also accept inputs and give
outputs in mutually inconsistent forms. This makes a ‘cloned-repository’ solution from which results
could be reproduced automatically impractical. In the interests of maximum possible transparency
we manually collect and present code sources and parameter values here in the hope that interested
readers will not find it difficult to reproduce our results locally if required. Recall that our simulations
consist of varying input h.

The one-step-ahead sampling model of Chkrebtii et al. [39] (labelled ‘Chkr.’ in Figure 2) was
run using MATLAB code from https://git.io/J33lL with nsolves = 100, N = d20/he,
nevalpoints = 1001 and the lambda and alpha hyperparameters left at their default values
(which depend on N, and therefore h). This software has no explicitly-stated licence.

The perturbed integrator approach of Conrad et al. [38] and Teymur et al. [41] (labelled ‘Conr. O1’
and ‘Teym. O2’ was run using MATLAB code provided to us by the authors of the latter paper and not,
as far as we are aware, publicly released.

The Gaussian filtering approach of Schober et al. [40], Tronarp et al. [47] and Bosch et al. [55]
(labelled ‘Scho. O1’, ‘Tron. O2’ and ‘Bosch O2’) was run by installing the Python package
probnum and using the function probsolve_ivp. ‘Scho. O1’ uses non-adaptive step-sizes and
takes algo_order = 1, and method = EK0; ‘Tron. O2’ uses non-adaptive step-sizes and takes
algo_order = 2, and method = EK1; while ‘Bosch O2’ uses adaptive step-sizes and takes
algo_order = 2, and method = EK1. In the latter case, h is taken as the relative tolerance rtol
instead of the step-size. This software is Copyright of the ProbNum Development Team and is
released under an MIT licence.

The reference solution used in calculating errors was calculated using MATLAB’s in-build ode45
function with tolerances set using odeset(‘RelTol’,3e-14,‘AbsTol’,1e-20)

It is difficult to fairly compare the wall-clock times of these codes, particularly since they are written
in different languages and are therefore run in different environments. For the example simulation in
Figure 2, none of the examples took more than a few seconds on a 2018 MacBook Pro, and some
were virtually instant. All publicly-available codes were downloaded or cloned on 22 April 2021.
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Figure 9: Likelihood variation in the neighbourhoods of the maximum likelihood values found by
MATLAB’s ode45 optimiser. In each case, the remaining parameters were fixed at their maximum
likelihood value. The values determined by the optimiser are shown with a vertical orange line.

C.3.2 Parameter Identifiability

In order to assess the robustness of our gradient-based optimisation procedure for maximum likelihood
estimation, we consider again the Lotka–Volterra model. Here we will vary each parameter `t, `h,
ρG and ρE in turn, holding all other parameters fixed at the values produced by the gradient-based
optimisation method. The resulting plots are given in Figure 9.

In this application, at least, we can be reasonably confident that the optimisation procedure has located
a global maximiser in 4D (though, strictly speaking, we cannot confirm this from the univariate plots
in Figure 9). In general, and as is common in GP modelling, model fit should always be assessed,
in order to be confident in the data-driven nature of the GP output, something particularly salient in
numerical applications where calibration is of paramount importance.

C.4 Eigenvalue Problems

In this section we provide certain further details for the eigenvalue problem presented in Section 4.2.
We first note that the matrixA defined there can be shown to have exact eigenvalues 4−2 cos(pπ/(l+
1))− 2 cos(qπ/(m+ 1)); p = 1, . . . , l; q = 1, . . . ,m. The knowledge of the true values is required
to facilitate the following analysis. For this section we take l = 3 and m = 5, as in the left-hand
panes of Figure 3.

In a similar manner to Figure 2, we plot in the left-hand pane of Figure 10 the (log-) error W for
several methods —the classic QR algorithm in green, then the traditional extrapolation methods
of Richardson and Bulirsch–Stoer (using the data obtained in the run of the QR algorithm) in red
and yellow respectively. From the definition of W , this ‘combined absolute error’ is formed by
considering the norm of the error vector of all eigenvalues. (The centre pane gives the (log-) maximum
relative error w, i.e. maxi[(λ̂i − λi)/λi], where λ̂ is the vector of true eigenvalues, and is provided
since this is a more familiar presentation of error in eigenvalue problems in numerical analysis.)

It is seen that polynomial and even rational function interpolation are not robust in this setting, and
give errors significantly larger than simply the most accurate single QR-produced estimate. BBPN
does not suffer the same issue, possibly because the nonparametric interpolant has favourable stability
properties, and it is somewhat competitive with the traditional QR algorithm, at the cost of additional
computation but with the additional richness of output that a PN method provides.

The right-hand pane shows the (log-squared-) surprise of individual eigenvalues of the 15 × 15
matrix, plotted over the 95% central probability region of a χ2

1 random variable. This shows that
the predictions provided for the majority of the 15 eigenvalues are well-calibrated, but that a small
number of predictions are overconfident. This is a promising early result for a problem with no
previous PN method in existence, as well as one in which α has to be inferred due to the absence of a
canonical parameterisation for h; see Appendix C.2.2.
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Figure 10: Eigenvalue Problems: Left: the combined absolute error W for the classic QR
algorithm (green), the traditional extrapolation methods of Richardson (red) and Bulirsh–Stoer
(yellow) using the data obtained in the run of the QR algorithm, and BBPN (blue). Centre: the
maximum relative error w for the same methods. Right: the surprise S of individual eigenvalues
of the 15× 15 matrix, plotted over the 95% central probability region of a χ2

1 random variable.

C.5 Kuramoto–Sivashinsky Equation (KSE)

In this section we provide further detail for the PDE problem presented in Section 4.3.

Numerical solutions to the Kuramoto–Sivashinsky equation (KSE) were computed on the spatial
grid x ∈ {0, 0.001, 0.002, . . . , 1} and over time segments ti,j = jhi for j ∈ {0, 1, . . . ,mj}, where
mj = b200/hie with b•e denoting the nearest integer function and hj the time-step parameter.
After transformation into Fourier space, solutions were computed using a fourth-order Runge–Kutta
numerical integrator ETDRK4 [73].

C.5.1 Fourier Transform to Employ the ETDRK4 Numerical Integration Scheme

We discretise the spatial domain using a Fourier spectral transformation. That is, we set

u(x, t) ≈
∑
k∈Ωk

ũk(t) expikx/L,

in (6), where Ωk denotes the set of wave-numbers. Doing so returns the Fourier transformed KSE,

d

dt
ũk(t) +

(
k4

L4
− k2

L2

)
ũk(t) +

ik

2L
ṽk(t) = 0, t > 0, (17)

where

ṽk(t) =
1

2πL

∫ πL

−πL
u2(x, t) exp−ikx/L dx ≈ 1

N

N−1∑
l=0

u2(xl, t) exp−ikxl/L

with N = 1/δx and δx denoting the spatial step-size, and on assuming that both the solution and
spatial derivative are periodic in x, i.e.,

u(x, t) = u(x+ 2πL, t) and
∂

∂x
u(x, t) =

∂

∂x
u(x+ 2πL, t), t ≥ 0,

for some user defined length scale L (which we take to be L = 1/2π in our simulation). See [73] for
a complete description of the fourth-order ETDRK4 scheme, as well as example MATLAB code used
to compute solutions to (17).
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