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Abstract

Several researchers have proposed minimisa-
tion of maximum mean discrepancy (MMD)
as a method to quantise probability mea-
sures, i.e., to approximate a distribution by a
representative point set. We consider sequen-
tial algorithms that greedily minimise MMD
over a discrete candidate set. We propose a
novel non-myopic algorithm and, in order to
both improve statistical efficiency and reduce
computational cost, we investigate a variant
that applies this technique to a mini-batch of
the candidate set at each iteration. When the
candidate points are sampled from the target,
the consistency of these new algorithms—and
their mini-batch variants—is established. We
demonstrate the algorithms on a range of im-
portant computational problems, including
optimisation of nodes in Bayesian cubature
and the thinning of Markov chain output.

1 Introduction

This paper considers the approximation of a proba-
bility distribution µ, defined on a set X , by a dis-
crete distribution ν = 1

n

!n
i=1 δ(xi), for some repre-

sentative points xi, where δ(x) denotes a point mass
located at x ∈ X . This quantisation task arises in
many areas including numerical cubature (Karvonen,
2019), experimental design (Chaloner and Verdinelli,
1995) and Bayesian computation (Riabiz et al., 2020).
To solve the quantisation task one first identifies an
optimality criterion, typically a notion of discrepancy
between µ and ν, and then develops an algorithm to
approximately minimise it. Classical optimal quanti-
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sation picks the xi to minimise a Wasserstein distance
between ν and µ, which leads to an elegant connection
with Voronoi partitions whose centres are the xi (Graf
and Luschgy, 2007). Several other discrepancies exist
but are less well-studied for the quantisation task. In
this paper we study quantisation with maximum mean
discrepancy (MMD), as well as a specific version called
kernel Stein discrepancy (KSD), each of which admit
a closed-form expression for a wide class of target dis-
tributions µ (e.g. Rustamov, 2019).

Despite several interesting results, optimal quantisa-
tion with MMD remains largely unsolved. Quasi
Monte Carlo (QMC) provides representative point sets
that asymptotically minimise MMD (Hickernell, 1998;
Dick and Pillichshammer, 2010); however, these re-
sults are typically limited to specific instances of µ and
MMD.1 The use of greedy sequential algorithms, in
which xn is selected conditional on the x1, . . . , xn−1 al-
ready chosen, has received some attention in the MMD
context—see Santin and Haasdonk (2017) and the sur-
veys in Oettershagen (2017) and Pronzato and Zhigl-
javsky (2018). Greedy sequential algorithms have also
been proposed for KSD (Chen et al., 2018, 2019), as
well as a non-greedy sequential algorithm for minimis-
ing MMD, called kernel herding (Chen et al., 2010).

In certain situations,2 the greedy and herding algo-
rithms produce the same sequence of points, with the
latter theoretically understood due to its interpreta-
tion as a Frank–Wolfe algorithm (Bach et al., 2012;
Lacoste-Julien et al., 2015). Outside the translation-
invariant context, empirical studies have shown that
greedy algorithms tend to outperform kernel herd-
ing (Chen et al., 2018). Information-theoretic lower
bounds on MMD have been derived in the liter-
ature on information-based complexity (Novak and
Woźniakowski, 2008) and in Mak et al. (2018), who

1In Section 2.1 we explain how MMD is parametrised by
a kernel ; the QMC literature typically focuses on µ uniform
on [0, 1]d, and d-dim tensor products of kernels over [0, 1].

2Specifically, the algorithms coincide when the kernel
on which they are based is translation-invariant.
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studied representative points that minimise an energy
distance; the relationship between energy distances
and MMD is clarified in Sejdinovic et al. (2013).

The aforementioned sequential algorithms require
that, to select the next point xn, one has to search
over the whole set X . This is often impractical, since
X will typically be an infinite set and may not have
useful structure (e.g. a vector space) that can be ex-
ploited by a numerical optimisation method.

Extended notions of greedy optimisation, where at
each step one seeks to add a point that is merely ‘suffi-
ciently close’ to optimal, were studied for KSD in Chen
et al. (2018). Chen et al. (2019) proposed a stochastic
optimisation approach for this purpose. However, the
global non-convex optimisation problem that must be
solved to find the next point xn becomes increasingly
difficult as more points are selected. This manifests,
for example, in the increasing number of iterations re-
quired in the approach of Chen et al. (2019).

This paper studies sequential minimisation of MMD
over a finite candidate set, instead of over the whole
of X . This obviates the need to use a numerical optimi-
sation routine, requiring only that a suitable candidate
set can be produced. Such an approach was recently
described in Riabiz et al. (2020), where an algorithm
termed Stein thinning was proposed for greedy min-
imisation of KSD. Discrete candidate sets in the con-
text of kernel herding were discussed in Chen et al.
(2010) and Lacoste-Julien et al. (2015), and in Paige
et al. (2016) for the case that the subset is chosen from
the support of a discrete target. Mak et al. (2018) pro-
posed sequential selection from a discrete candidate set
to approximately minimise energy distance, but theo-
retical analysis of this algorithm was not attempted.

The novel contributions of this paper are as follows:

• We study greedy algorithms for sequential min-
imisation of MMD, including novel non-myopic al-
gorithms in which multiple points are selected si-
multaneously. These algorithms are also extended
to allow for mini-batching of the candidate set.
Consistency is established and a finite-sample-size
error bound is provided.

• We show how non-myopic algorithms can be cast
as integer quadratic programmes (IQP) that can
be exactly solved using standard libraries.

• A detailed empirical assessment is presented, in-
cluding a study varying the extent of non-myopic
selection, up to and including the limiting case in
which all points are selected simultaneously. Such
non-sequential algorithms require high computa-
tional expenditure, and so a semi-definite relax-
ation of the IQP is considered in the supplement.

The remainder of the paper is structured thus. In Sec-
tion 2 we provide background on MMD and KSD. In
Section 3 our novel methods for optimal quantisation
are presented. Our empirical assessment, including
comparisons with existing methods, is in Section 4 and
our theoretical assessment is in Section 5. The paper
concludes with a discussion in Section 6.

2 Background

Let X be a measurable space and let P(X ) denote
the set of probability distributions on X . First we
introduce a notion of discrepancy between two mea-
sures µ, ν ∈ P(X ), and then specialise this definition
to MMD (Section 2.1) and KSD (Section 2.2).

For any µ, ν ∈ P(X ) and set F consisting of real-
valued measurable functions on X , we define a dis-
crepancy to be a quantity of the form

DF (µ, ν) = supf∈F
"

"

#

f dµ−
#

f dν
"

" , (1)

assuming F was chosen so that all integrals in (1) exist.
The set F is called measure-determining if DF (µ, ν) =
0 implies µ = ν, and in this case DF is called an
integral probability metric (Müller, 1997). An example
is the Wasserstein metric—induced by choosing F as
the set of 1-Lipschitz functions defined on X—that
is used in classical quantisation (Dudley, 2018, Thm.
11.8.2). Next we describe how MMD and KSD are
induced from specific choices of F .

2.1 Maximum Mean Discrepancy

Consider a symmetric and positive-definite function
k : X × X → R, which we call a kernel. A kernel re-
produces a Hilbert space of functions H from X → R
if (i) for all x ∈ X we have k(·, x) ∈ H, and (ii) for
all x ∈ X and f ∈ H we have 〈k(·, x), f〉H = f(x),
where 〈·, ·〉H denotes the inner product in H. By the
Moore–Aronszajn theorem (Aronszajn, 1950), there is
a one-to-one mapping between the kernel k and the
reproducing kernel Hilbert space (RKHS) H, which we
make explicit by writing H(k). A prototypical exam-
ple of a kernel on X ⊆ Rd is the squared-exponential
kernel k(x, y; ℓ) = exp(− 1

2ℓ
−2(x− y(2), where ( · ( in

this paper denotes the Euclidean norm and ℓ > 0 is a
positive scaling constant.

Choosing the set F in (1) to be the unit ball B(k) :=
{f ∈ H(k) : 〈f, f〉H(k) ≤ 1} of the RKHS H(k) enables
the supremum in (1) to be written in closed form and
defines the MMD (Song, 2008):

MMDµ,k(ν)
2 := DB(k)(µ, ν)

=
##

k(x, y) dν(x) dν(y)− 2
##

k(x, y) dν(x) dµ(y)

+
##

k(x, y) dµ(x) dµ(y) (2)
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Our notation emphasises ν as the variable of interest,
since in this paper we aim to minimise MMD over pos-
sible ν for a fixed kernel k and a fixed target µ. Under
suitable conditions on k and X it can be shown that
MMD is a metric on P(X ) (in which case the kernel is
called characteristic); for sufficient conditions see Sec-
tion 3 of Sriperumbudur et al. (2010). Furthermore,
under stronger conditions on k, MMD metrises the
weak topology on P(X ) (Sriperumbudur et al., 2010,
Thms. 23, 24). This provides theoretical justification
for minimisation of MMD: if MMDµ,k(ν) → 0 then
ν ⇒ µ, where ⇒ denotes weak convergence in P(X ).

Evaluation of MMD requires that µ and ν are either
explicit or can be easily approximated (e.g. by sam-
pling), so as to compute the integrals appearing in
(2). This is the case in many applications and MMD
has been widely used (Arbel et al., 2019; Briol et al.,
2019a; Chérief-Abdellatif and Alquier, 2020). In cases
where µ is not explicit, such as when it arises as an
intractable posterior in a Bayesian context, KSD can
be a useful specialisation of MMD that circumvents
integration with respect to µ. We describe this next.

2.2 Kernel Stein Discrepancy

While originally proposed as a means of proving dis-
tributional convergence, Stein’s method (Stein, 1972)
can be used to circumvent the integration against µ
required in (2) to calculate the MMD. Suppose we
have an operator Aµ defined on a set of functions G
such that

#

Aµg dµ = 0 holds for all g ∈ G. Choosing
F = AµG := {Aµg : g ∈ G} in (1), we would then have
DAµG(µ, ν) = supg∈G

"

"

#

Aµg dν
"

", an expression which
no longer involves integrals with respect to µ. Appro-
priate choices for Aµ and G were studied in Gorham
and Mackey (2015), who termed DAµG the Stein dis-
crepancy, and these will now be described.

Assume µ admits a positive and continuously differen-
tiable density pµ on X = Rd; let ∇ and ∇· denote the
gradient and divergence operators respectively; and let
k : Rd × Rd → R be a kernel that is continuously dif-
ferentiable in each argument. Then take

Aµg := ∇ · g + uµ · g, uµ := ∇ log pµ,

G := {g : Rd → Rd :
!d

i=1〈gi, gi〉H(k) ≤ 1}.

Note that G is the unit ball in the d-dimensional tensor
product of H(k). Under mild conditions on k and µ
(Gorham and Mackey, 2017, Prop. 1), it holds that
#

Aµg dµ = 0 for all g ∈ G. The set AµG can then be
shown (Oates et al., 2017) to be the unit ball B(kµ) in
a different RKHS H(kµ) with reproducing kernel

kµ(x, y) := ∇x ·∇yk(x, y) +∇xk(x, y) · uµ(y)

+∇yk(x, y) · uµ(x) + k(x, y)uµ(x) · uµ(y),
(3)

where subscripts are used to denote the argument upon
which a differential operator acts. Since kµ(x, ·) ∈
H(kµ), it follows that

#

kµ(x, ·) dµ(x) = 0 and from
(2) we arrive at the kernel Stein discrepancy (KSD)

MMDµ,kµ(ν)
2 =

##

kµ(x, y) dν(x) dν(y).

Under stronger conditions on µ and k it can be shown
that KSD controls weak convergence to µ in P(Rd),
meaning that if MMDµ,kµ

(ν) → 0 then ν ⇒ µ
(Gorham and Mackey, 2017, Thm. 8). The description
of KSD here is limited to Rd, but constructions also
exist for discrete spaces (Yang et al., 2018) and more
general Riemannian manifolds (Barp et al., 2018; Xu
and Matsuda, 2020; Le et al., 2020). Extensions that
use other operators Aµ (Gorham et al., 2019; Barp
et al., 2019) have also been studied.

3 Methods

In this section we propose novel algorithms for minimi-
sation of MMD over a finite candidate set. The sim-
plest algorithm is described in Section 3.1, and from
this we generalise to consider both non-myopic selec-
tion of representative points and mini-batching in Sec-
tion 3.2. A discussion of non-sequential algorithms,
as the limit of non-myopic algorithms where all points
are simultaneously selected, is given in Section 3.3.

3.1 A Simple Algorithm for Quantisation

In what follows we assume that we are provided with
a finite candidate set {xi}ni=1 ⊂ X from which rep-
resentative points are to be selected. Ideally, these
candidates should be in regions where µ is supported,
but we defer making any assumptions on this set un-
til the theoretical analysis in Section 5. The simplest
algorithm that we consider greedily minimises MMD
over the candidate set; for each i, pick

π(i) ∈ argmin
j∈{1,...,n}

MMDµ,k

$

1
i

!i−1
i′=1 δ(xπ(i′)) +

1
i δ(xj)

%

,

to obtain, after m steps, an index sequence π ∈
{1, . . . , n}m and associated empirical distribution ν =
1
m

!m
i=1 δ(xπ(i)). (The convention

!0
i=1 = 0 is used.)

Explicit formulae are contained in Algorithm 1. The
computational complexity of selecting m points in this
manner is O(m2n), provided that the integrals appear-
ing in Algorithm 1 can be evaluated in O(1). Note that
candidate points can be selected more than once.

Theorems 1, 2 and 4 in Section 5 provide novel finite-
sample-size error bounds for Algorithm 1 (as a special
case of Algorithm 2). The two main shortcomings of
Algorithm 1 are that (i) the myopic nature of the op-
timisation may be statistically inefficient, and (ii) the
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Algorithm 1: Myopic minimisation of MMD

Data: A set {xi}ni=1, a distribution µ, a kernel k and
a number m ∈ N of output points

Result: An index sequence π ∈ {1, . . . , n}m
for i = 1, . . . ,m do

π(i) ∈ argmin
j∈{1,...,n}

&

1
2k(xj , xj) +

!i−1
i′=1 k(xπ(i′), xj)

−i
#

k(x, xj)dµ(x)
'

end

requirement to scan through a large candidate set dur-
ing each iteration may lead to unacceptable computa-
tional cost. In Section 3.2 we propose non-myopic and
mini-batch extensions to address these issues.

3.2 Generalised Sequential Algorithms

In Section 3.2.1 we describe a non-myopic extension of
Algorithm 1, where multiple points are simultaneously
selected at each step. The use of non-myopic optimisa-
tion is impractical when a large candidate set is used,
and therefore we explain how mini-batches from the
candidate set can be employed in Section 3.2.2.

3.2.1 Non-Myopic Minimisation

Now we consider the simultaneous selection of s > 1
representative points from the candidate set at each
step. This leads to the non-myopic algorithm

π(i, ·)∈ argmin
S∈{1,...,n}s

MMDµ,k

$

1
is

!i−1
i′=1

!s
j=1 δ(xπ(i′,j))

+ 1
is

!

j∈S δ(xj)
%

,

whose output is a bivariate index π ∈ {1, . . . , n}m×s,
together with the associated empirical distribution ν =
1
ms

!m
i=1

!s
j=1 δ(xπ(i,j)). Explicit formulae are con-

tained in Algorithm 2. The computational complexity
of selecting ms points in this manner is O(m2s2ns),
which is larger than Algorithm 1 when s > 1. The-
orems 1, 2 and 4 in Section 5 provide novel finite-
sample-size error bounds for Algorithm 2.

Despite its daunting computational complexity, we
have found that it is practical to exactly implement
Algorithm 2 for moderate values of s and n by cast-
ing each iteration of the algorithm as an instance of a
constrained integer quadratic programme (IQP) (e.g.
Wolsey, 2020), so that state-of-the-art discrete opti-
misation methods can be employed. To this end, we
represent the indices S ⊂ {1, . . . , n}s of the s points
to be selected at iteration i as a vector v ∈ {0, . . . , s}n
whose jth element indicates the number of copies of
xj that are selected, and where v is constrained to
satisfy

!n
j=1 vj = s. It is then an algebraic exercise

to recast an optimal subset π(i, ·) as the solution to a
constrained IQP:

Algorithm 2: Non-myopic minimisation of MMD

Data: A set {xi}ni=1, a distribution µ, a kernel k, a
number of points to select per iteration s ∈ N
and a total number of iterations m ∈ N

Result: An index sequence π ∈ {1, . . . , n}m×s

for i = 1, . . . ,m do

π(i, ·) ∈ argmin
S∈{1,...,n}s

&

1
2

!

j,j′∈S k(xj , xj′)

+
!i−1

i′=1

!s
j=1

!

j′∈S k(xπ(i′,j), xj′)

−is
!

j∈S

#

k(x, xj)dµ(x)
'

end

argmin
v∈Ns

0

1
2v

⊤Kv + ci⊤v s.t. 1⊤v = s (4)

Kj,j′ := k(xj , xj′), 1j := 1 for j = 1, . . . , n,

cij :=
!i−1

i′=1

!s
j′=1 k(xπ(i′,j′), xj)− is

#

k(x, xj) dµ(x)

Remark 1. If one further imposes the constraint
vi ∈ {0, 1} for all i, so that each candidate may be se-
lected at most once, then the resulting binary quadratic
programme (BQP) is equivalent to the cardinality con-
strained k-partition problem from discrete optimisa-
tion, which is known to be NP-hard (Rendl, 2016).
(The results we present do not impose this constraint.)

3.2.2 Mini-Batching

The exact solution of (4) is practical only for moderate
values of s and n. This motivates the idea of consider-
ing only a subset of the n candidates at each iteration,
a procedure we call mini-batching and inspired by the
similar idea from stochastic optimisation. There are
several ways that mini-batching can be performed, but
here we simply state that candidates denoted {xi

j}bj=1

are considered during the ith iteration, with the mini-
batch size denoted by b ∈ N. The non-myopic algo-
rithm for minimisation of MMD with mini-batching is
then

π(i, ·)∈ argmin
S∈{1,...,b}s

MMDµ,k

$

1
is

!i−1
i′=1

!s
j=1 δ(x

i′

π(i′,j))

+ 1
is

!

j∈S δ(xi
j)
%

Explicit formulae are contained in Algorithm 3. The
complexity of selecting ms points in this manner is
O(m2s2bs), which is smaller than Algorithm 2 when
b < n. As with Algorithm 2, an exact IQP formulation
can be employed. Theorem 3 provides a novel finite-
sample-size error bound for Algorithm 3.

3.3 Non-Sequential Algorithms

Finally we consider the limit of the non-myopic Al-
gorithm 2, in which all m representative points are
simultaneously selected in a single step:
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Figure 1: Quantisation of a Gaussian mixture model using MMD. A candidate set of 1000 independent samples
(left), from which 12 representative points were selected using: the myopic method (centre-left); non-myopic
selection, picking 4 points at a time (centre-right), and by simultaneous selection of all 12 points (right). Simu-
lations were conducted using Algorithms 1 and 2, with a Gaussian kernel whose length-scale was ℓ = 0.25.

Algorithm 3: Non-myopic minimisation of MMD
with mini-batching

Data: A set {{xi
j}bj=1}mi=1 of mini-batches, each of

size b ∈ N, a distribution µ, a kernel k, a
number of points to select per iteration s ∈ N,
and a number of iterations m ∈ N

Result: An index sequence π ∈ {1, . . . , n}m×s

for i = 1, . . . ,m do

π(i, ·) ∈ argmin
S∈{1,...,b}s

&

1
2

!

j,j′∈S k(xi
j , x

i
j′)

+
!i−1

i′=1

!s
j=1

!

j′∈S k(xi′

π(i′,j), x
i
j′)

−is
!

j∈S

#

k(x, xi
j)dµ(x)

'

end

π ∈ argmin
S∈{1,...,n}m

MMDµ,k

$

1
m

!

i∈S δ(xπ(i))
%

(5)

The index set π can again be recast as the solu-
tion to an IQP and the associated empirical measure
ν = 1

m

!m
i=1 δ(xπ(i)) provides, by definition, a value

for MMDµ,k(ν) that is at least as small as any of the
methods so far described (thus satisfying the same er-
ror bounds derived in Theorems 1–4).

However, it is only practical to exactly solve (5) for
small m and thus, to arrive at a practical algorithm,
we consider approximation of (5). There are at least
two natural ways to do this. Firstly, one could run a
numerical solver for the IQP formulation of (5) and
terminate after a fixed computational limit is reached;
the solver will return a feasible, but not necessarily
optimal, solution to the IQP. An advantage of this
approach is that no further methodological work is re-
quired. Alternatively, one could employ a convex re-
laxation of the intractable IQP, which introduces an
approximation error that is hard to quantify but leads
to a convex problem that may be exactly soluble at
reasonable cost. We expand on the latter approach in
Appendix B, with preliminary empirical comparisons.

4 Empirical Assessment

This section presents an empirical assessment3 of Algo-
rithms 1–3. Two regimes are considered, correspond-
ing to high compression (small sm/n; Section 4.1)
and low compression (large sm/n; Section 4.2) of the
target. These occur, respectively, in applications to
Bayesian cubature and thinning of Markov chain out-
put. In Section 4.3, we compare our method to a
variety of others based on optimisation in continuous
spaces, augmenting a study in Chen et al. (2019). For
details of the kernels used, and a sensitivity analysis
for the kernel parameters, see Appendix C.

Figure 1 illustrates how a non-myopic algorithm may
outperform a myopic one. A candidate set was con-
structed using 1000 independent samples from a test
measure, and 12 representative points selected using
the myopic (Alg. 1 with m = 12), non-myopic (Alg.
2 with m = 3 and s = 4), and non-sequential (Alg. 2
with m = 1 and s = 12) approaches. After choosing
the first three samples close to the three modes, the
myopic method then selects points that temporarily
worsen the overall approximation; note in particular
the placement of the fourth point. The non-myopic
methods do not suffer to the same extent: choosing 4
points together gives better approximations after each
of 4, 8 and 12 samples have been chosen (s = 4 was
chosen deliberately so as to be co-prime to the number
of mixture components, 3). Choosing all 12 points at
once gives an even better approximation.

4.1 Bayesian Cubature

Larkin (1972) and subsequent authors proposed to cast
numerical cubature in the Bayesian framework, such
that an integrand f is a priori modelled as a Gaussian
process with covariance k, then conditioned on data

3Our code is written in Python and is available at
https://github.com/oteym/OptQuantMMD
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Figure 2: Synthetic data model
formed of a mixture of 20 bivariate
Gaussians (top). Effect of varying
the number s of simultaneously-
chosen points on MMD when
choosing 60 from 1000 indepen-
dently sampled points (bottom).

Figure 3: KSD vs. wall-clock time, and KSD × time vs. number of
selected samples, shown for the 38-dim calcium signalling model (top two
panes) and 4-dim Lotka–Volterra model (bottom two panes). The kernel
length-scale in each case was set using the median heuristic (Garreau
et al., 2017), and estimated in practice using a uniform subsample of
1000 points for each model. The myopic algorithm of Riabiz et al. (2020)
is included in the Lotka–Volterra plots—see main text for details.

D = {f(xi)}ni=1 as the integrand is evaluated. The
posterior standard deviation is (Briol et al., 2019b)

Std
( #

f dµ|D
)

= min
w1,...,wm∈R

MMDµ,k

$ m
!

i=1

wiδ(xi)
%

. (6)

The selection of xi to minimise (6) is impractical since
evaluation of (6) has complexity O(m3). Huszár and
Duvenaud (2012) and Briol et al. (2015) noted that
(6) can be bounded above by fixing wi =

1
m , and that

quantisation methods give a practical means to min-
imise this bound. All results in Section 5 can therefore
be applied and, moreover, the bound is expected to be
quite tight—wi ≪ 1

m implies that xi was not optimally
placed, thus for optimal xi we anticipate wi ≈ 1

m .

BC is most often used when evaluation of f has a high
computational cost, and one is prepared to expend re-
sources in the optimisation of the point set {xi}mi=1.
Our focus in this section is therefore on the quality of
the point set obtained, irrespective of computational
cost. Figure 1 suggested that the approximation qual-
ity of non-myopic methods depends on s. Figure 2
compares the selection of 60 from 1000 independently
sampled points from a mixture of 20 Gaussians, vary-
ing s. This gives a set of step functions. Less myopic

selections are seen to outperform more myopic ones.
Note in particular that MMD of the myopic method
(s = 1) is observed to decrease non-monotonically.
This is a manifestation of the phenomenon also seen in
Figure 1, where a particular selection may temporarily
worsen the quality of the overall approximation.

Next we consider applications in Bayesian statistics,
where both approximation quality and computation
time are important. In what follows the density pµ
will be available only up to an unknown normalisa-
tion constant and thus KSD—which requires only that
uµ = ∇ log pµ can be evaluated—will be used.

4.2 Thinning of Markov Chain Output

The use of quantisation to ‘thin’ Markov chain out-
put was proposed in Riabiz et al. (2020), who studied
greedy myopic algorithms based on KSD. We revisit
the applications from that work to determine whether
our methods offer a performance improvement. Unlike
Section 4.1, the cost of our algorithms must now be as-
sessed, since their runtime may be comparable to the
time required to produce Markov chain output itself.
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The datasets4 consist of (i) 4 × 106 samples from the
38-parameter intracellular calcium signalling model of
Hinch et al. (2004), and (ii) 2× 106 samples from a 4-
parameter Lotka–Volterra predator-prey model. The
MCMC chains are both highly auto-correlated and
start far from any mode. The greedy KSD approach
of Riabiz et al. (2020) was found to slow down dra-
matically after selecting 103 samples, due to the need
to compute the kernel between selected points and all
points in the candidate set at each iteration. We em-
ploy mini-batching (b < n) to ameliorate this, and also
investigate the effectiveness of non-myopic selection.

Figure 3 plots KSD against time, with the number of
collected samples m fixed at 1000, as well as time-
adjusted KSD against m for both models. This ac-
knowledges that both approximation quality and com-
putational time are important. In both cases, larger
mini-batches were able to perform better provided that
s was large enough to realise their potential. Non-
myopic selection shows a significant improvement over
batch-myopic in the Lotka–Volterra model, and a less
significant (though still visible) improvement in the
calcium signalling model. The practical upper limit
on b for non-myopic methods (due to the requirement
to optimise over all b points) may make performance
for larger s poorer relatively; in a larger and more com-
plex model, there may be fewer than s ‘good’ samples
to choose from given moderate b. This suggests that
control of the ratio s/b may be important; the best
results we observed occurred when s/b = 10−1.

A comparison to the original myopic algorithm (i.e.
b = n) of Riabiz et al. (2020) is incuded for the Lotka–
Volterra model. This is implemented using the same
code and machine as the other simulations. The cyan
line shown in the bottom two panes of Figure 3 rep-
resents only 50 points (not 1000); collecting just these
took 42 minutes. This algorithm is slower still for the
calcium signalling model, so it was omitted.

4.3 Comparison with Previous Approaches

Here we compare against approaches based on continu-
ous optimisation, reproducing a 10-dimensional ODE
inference task due to Chen et al. (2019). The aim
is to minimise KSD whilst controlling the number of
evaluations neval of either the (un-normalised) target
µ or its log-gradient uµ. Figure 4 reports results
for random walk Metropolis (RWM), the Metropolis-
adjusted Langevin algorithm (MALA), Stein varia-
tional gradient descent (SVGD), minimum energy de-
signs (MED), Stein points (SP), and Stein point
MCMC (four flavours, denoted SP-∗, described in
Chen et al., 2019). The method from Algorithm 3,

4Available at https://doi.org/10.7910/DVN/MDKNWM.
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Figure 4: Comparison of quality of approximation for
various methods, adjusted by the number of evalua-
tions neval of µ or uµ. For details of line labels, refer
to the main text, and to Fig. 4 of Chen et al. (2019).

shown as a black solid line (OPT MB 100-10; b = 100,
s = 10) and dashed line (OPT MB 10-1; b = 10,
s = 1), was applied to select 100 states from the first
mb states visited in the RWM sample path, with m
increasing and b fixed. The resulting quantisations are
competitive with those produced by existing methods,
at comparable computational cost. We additionally
include a comparison with batch-uniform selection (B-
UNIF 100-10; b = 100, s = 10, drawn uniformly from
the RWM output) in light grey.

5 Theoretical Assessment

This section presents a theoretical assessment of Al-
gorithms 1–3. Once stated, a standing assumption is
understood to hold for the remainder of the main text.

Standing Assumption 1. Let X be a measurable
space equipped with a probability measure µ. Let k :
X × X → R be symmetric positive definite and satisfy
C2

µ,k :=
##

k(x, y)dµ(x)dµ(y) < ∞.

For the kernels kµ described in Section 2.2, Cµ,kµ
= 0

and the assumption is trivially satisfied. Our first re-
sult is a finite-sample-size error bound for non-myopic
algorithms when the candidate set is fixed:

Theorem 1. Let {xi}ni=1 ⊂ X be fixed and let C2
n,k :=

maxi=1,...,n k(xi, xi). Consider an index sequence π of
length m and with selection size s produced by Algo-
rithm 2. Then for all m ≥ 1 it holds that

MMDµ,k

$

1
ms

!m
i=1

!s
j=1 δ(xπ(i,j))

%2

≤ min
1⊤w=1
wi≥0

MMDµ,k

*

!n
i=1 wiδ(xi)

+2
+ C2

$

1+logm
m

%

,

with C := Cµ,k + Cn,k an m-independent constant.
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The proof is provided in Appendix A.1. Aside from
providing an explicit error bound, we see that the out-
put of Algorithm 2 converges in MMD to the optimal
(weighted) quantisation of µ that is achievable using
the candidate point set. Interestingly, all bounds we
present are independent of s.

Remark 2. Theorems 1–4 are stated for general
MMD and apply in particular to KSD, for which we
set k = kµ. These results extend the work of Chen
et al. (2018, 2019) and Riabiz et al. (2020), who con-
sidered only myopic algorithms (i.e., s = 1).

Remark 3. The theoretical bounds being independent
of s do not necessarily imply that s = 1 is optimal
in practice; indeed our empirical results in Section 4
suggest that it is not.

Our remaining results explore the cases where the can-
didate points are randomly sampled. Independent and
dependent sampling is considered and, in each case,
the following moment bound will be assumed:

Standing Assumption 2. For some γ > 0, C1 :=
supi∈N E

(

eγk(xi,xi)
)

< ∞, where the expectation is
taken over x1, . . . , xn.

In the first randomised setting, the xi are indepen-
dently sampled from µ, as would typically be possible
when µ is explicit:

Theorem 2. Let {xi}ni=1 ⊂ X be independently sam-
pled from µ. Consider an index sequence π of length
m produced by Algorithm 2. Then for all s ∈ N and
all m,n ≥ 1 it holds that

E
&

MMDµ,k

$

1
ms

!m
i=1

!s
j=1 δ(xπ(i,j))

%2 '

≤ log(C1)
nγ + 2

$

C2
µ,k + log(nC1)

γ

%$

1+logm
m

%

.

The proof is provided in Appendix A.2. It is seen that
n must be asymptotically increased with m in order
for the approximation provided by Algorithm 2 to be
consistent. No smoothness assumptions were placed
on k; such assumptions can be used to improve the
O(n−1) term (as in Thm. 1 of Ehler et al., 2019), but
we did not consider this useful since the O(m−1) term
is the bottleneck in the bound.

An analogous (but more technically involved) argu-
ment leads to a finite-sample-size error bound when
mini-batches are used:

Theorem 3. Let each mini-batch {xi
j}bj=1 ⊂ X be

independently sampled from µ. Consider an index se-
quence π of length m produced by Algorithm 3. Then
∀ m,n ≥ 1

E
&

MMDµ,k

$

1
ms

!m
i=1

!s
j=1 δ(x

i
π(i,j))

%2 '

≤ log(C1)
bγ + 2

$

C2
µ,k + log(bC1)

γ

%$

1+logm
m

%

.

The proof is provided in Appendix A.3. The mini-
batch size b plays an analogous role to n in Theorem 2
and must be asymptotically increased with m in order
for Algorithm 3 to be consistent.

In our second randomised setting the candidate set
arises as a Markov chain sample path. Let V be a
function V : X → [1,∞) and, for a function f : X → R
and a measure µ on X , let

(f(V := supx∈X
|f(x)|
V (x) , (µ(V := sup&f&V ≤1

"

"

#

fdµ
"

" .

A ψ-irreducible and aperiodic Markov chain with nth
step transition kernel Pn is V-uniformly ergodic if and
only if there exists R ∈ [0,∞) and ρ ∈ (0, 1) such that

(Pn(x, ·)− P(V ≤ RV (x)ρn (7)

for all initial states x ∈ X and all n ∈ N (see Thm.
16.0.1 of Meyn and Tweedie, 2012).

Theorem 4. Assume that
#

k(x, ·)dµ(x) = 0 for all
x ∈ X . Consider a µ-invariant, time-homogeneous,
reversible Markov chain {xi}i∈N ⊂ X generated us-
ing a V-uniformly ergodic transition kernel, such that
(7) is satisfied with V (x) ≥

,

k(x, x) for all x ∈ X .

Suppose that C2 := supi∈N E[
,

k(xi, xi)V (xi)] < ∞.
Consider an index sequence π of length m and selec-
tion subset size s produced by Algorithm 2. Then, with
C3 = 2Rρ

1−ρ , we have that

E
&

MMDµ,k

$

1
ms

!m
i=1

!s
j=1 δ(xπ(i,j))

%2 '

≤ log(C1)
nγ + C2C3

n + 2
$

C2
µ,k + log(nC1)

γ

%$

1+logm
m

%

.

The proof is provided in Appendix A.4. Analysis of
mini-batching in the dependent sampling context ap-
pears to be more challenging and was not attempted.

6 Discussion

This paper focused on quantisation using MMD,
proposing and analysing novel algorithms for this task,
but other integral probability metrics could be con-
sidered. More generally, if one is interested in com-
pression by means other than quantisation then other
approaches may be useful, such as Gaussian mixture
models and related approaches from the literature on
density estimation (Silverman, 1986).

Some avenues for further research include: (i) extend-
ing symmetric structure in µ to the set of representa-
tive points (Karvonen et al., 2019); (ii) characterising
an optimal sampling distribution from which elements
of the candidate set can be obtained (Bach, 2017);
(iii) further applications of our method, for example
to Bayesian neural networks, where quantisation of the
posterior provides a promising route to reduce the cost
of predicting each label in the test dataset. •
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Supplementary Material

This supplement is structured as follows: In Appendix A we present proofs for all novel theoretical results stated
in Section 5 of the main text. In Appendices B and C we provide additional experimental results to support the
discussion in Section 4 of the main text.

A Proof of Theoretical Results

In what follows we let H denote the reproducing kernel Hilbert space H(k) reproduced by the kernel k and let
( · (H denote the induced norm in H.

A.1 Proof of Theorem 1

To start the proof, define

am := (ms)2 MMDµ,k

-

.

1
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m
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s
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=
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and note immediately that am = (fm(2H. Then we can write a recursive relation
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We will first derive an upper bound for (∗), then one for (∗∗).

Bounding (∗): Noting that the algorithm chooses the S ∈ {1, . . . , n}s that minimises
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In (8) we used the reproducing property, while in (9) we used the Cauchy–Schwarz inequality and in (10) we
used Jensen’s inequality. To bound the third term in (11), we write

min
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This linear combination is clearly minimised by taking each of the xi equal to a candidate point xj that
minimises fm−1(xj), and taking the corresponding cj = 1, and all other ci = 0. Now consider an element
hw =

!n
i=1 wik(·, xi) for which the weights w = (w1, . . . , wn)

⊤ minimise MMDµ,k(
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i=1 wiδ(xi)) subject to
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Combining this with (11) provides an overall bound on (∗).

Bounding (∗∗): To upper bound (∗∗) we can in fact just use an equality;
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Bound on the Iterates: Combining our bounds on (∗) and (∗∗), we obtain
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n,k + 2s2Cn,kCµ,k + 2s〈fm−1, hw − hµ〉H + s2(hµ(2H

≤ am−1 + s2C2
n,k + 2s2Cn,kCµ,k + 2s(fm−1(H · (hw − hµ(H + s2(hµ(2H

≤ am−1 +
*

s2C2
n,k + 2s2Cn,kCµ,k + s2C2

µ,k

+

+ 2s
√
am−1 · (hw − hµ(H
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The last line arises because

(hµ(2H =

22

k(x, x′) dµ(x) dµ(x′) =

22

〈k(x, ·), k(x′, ·)〉 dµ(x) dµ(x′) (12)

≤
22

|〈k(x, ·), k(x′, ·)〉| dµ(x) dµ(x′)

≤
22

(k(x, ·)(H(k(x′, ·)(H dµ(x) dµ(x′) (13)

=

;

2

,

k(x, x) dµ(x)

<2

≤
2

k(x, x) dµ(x) = C2
µ,k. (14)

In (12) we used the reproducing property, while in (13) we used the Cauchy–Schwarz inequality and in (14) we
used Jensen’s inequality.

We now note that

(hw − hµ(2H = 〈hw − hµ, hw − hµ〉H

=

=

n
/

i=1

wik(·, xi)−
2

k(·, x) dµ(x),
n
/

i′=1

wi′k(·, xi′)−
2

k(·, x′) dµ(x′)

>

H

=

n
/

i=1

n
/

i′=1

wiwi′k(xi, xi′)− 2

n
/

i=1

wi

2

k(xi, x) dµ(x) +

22

k(x, x′) dµ(x) dµ(x′)

= MMDµ,k

C

n
/

i=1

wiδ(xi)

D2

=: Φ2,

which gives
am ≤ am−1 + s2(Cn,k + Cµ,k)

2 + 2s
√
am−1 · Φ

as an overall bound on the iterates am.

Inductive Argument: Next we follow a similar argument to Theorem 1 in Riabiz et al. (2020) to establish an
induction in am. Defining C2 := (Cn,k + Cµ,k)

2 for brevity and noting that C2 is a constant satisfying C2 ≥ 0,
we assert

am ≤ (sm)2(Φ2 +Km), with Km :=
1

m
(C2 − Φ2)

m
/

j=1

1

j

For m = 1, we have a1 ≤ s2(C2
n,k + 2Cn,kCµ,k + C2

µ,k) = s2C2, so the root of the induction holds. We now

assume that am−1 ≤ s2(m− 1)2(Φ2 +Km−1). Then

am ≤ am−1 + s2C2 + 2s
√
am−1 · Φ

≤ s2(m− 1)2(Φ2 +Km−1) + s2C2 + 2s2(m− 1)Φ
,

Φ2 +Km−1

≤ s2
(

(m− 1)2(Φ2 +Km−1) + C2 + (m− 1)(2Φ2 +Km−1)
)

(15)

= s2
(

(m2 − 1)Φ2 +m(m− 1)Km−1 + C2
)

= s2
E

(m2 − 1)Φ2 +m(C2 − Φ2)

m−1
/

j=1

1

j
+ C2

F

= s2
E

(m2 − 1)Φ2 +m(C2 − Φ2)

m
/

j=1

1

j
−m(C2 − Φ2)

1

m
+ C2

F

= s2
E

m2Φ2 +m(C2 − Φ2)

m
/

j=1

1

j

F

= (sm)2(Φ2 +Km),

which proves the induction. Here (15) follows from the fact that for any a, b > 0, it holds that 2a
√
a2 + b ≤ 2a2+b.
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Overall Bound: To complete the proof, we first show that Φ2 ≤ C2 by writing

Φ2 = (hw − hµ(2H ≤ (hw(2H + 2(hw(H · (hµ(H + (hµ(2H

and noting that, since k(xi, xi′) ≤
,

k(xi, xi)
,

k(xi′ , xi′) and
!n

i=1 wi = 1, it holds that

(hw(2H =

n
/

i=1

n
/

i′=1

wiwi′k(xi, xi′) ≤ C2
n,k.

We have already shown that (hµ(2 ≤ C2
µ,k, thus it follows that Φ

2 ≤ C2
n,k + 2Cn,kCµ,k +C2

µ,k ≡ C2 as required.

Using this bound in conjunction with the elementary series inequality
!m

j=1 j
−1 ≤ (1 + logm), we have Km ≥ 0

and

Km =
1

m
(C2 − Φ2)

m
/

j=1

1

j
≤ 1

m
C2

m
/

j=1

1

j
≤

;

1 + logm

m

<

C2

Finally, the theorem follows by noting

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xπ(i,j))

0

1

2

=
am

(sm)2
≤ Φ2 +Km = Φ2 +

;

1 + logm

m

<

C2,

as claimed. □

Remark: We observe that, in the myopic case only (s = 1), one can alternatively recover Theorem 1 as a
consequence of Theorem 1 in Riabiz et al. (2020) (refer also to Theorem 5 of Chen et al., 2019). This can be
seen by noting that MMDµ,k0(ν) = MMDµ,k(ν) for all ν ∈ P(X ), where k0 is the kernel

k0(x, y) := k(x, y)−
2

k(x, x′)dµ(x′)−
2

k(y, y′)dµ(y′) +

22

k(x′, y′)dµ(x′)dµ(y′), (16)

which satisfies the precondition

2

k0(x, y
′)dµ(y′) = 0 for all x ∈ X in Theorem 1 of Riabiz et al. (2020). Indeed,

MMDµ,k0(ν)
2 =

9

9

9

9

2

k0(·, y′)dν(y′)−
2

k0(·, y′)dµ(y′)
9

9

9

9

2

H(k0)

=

9

9

9

9

2

k0(·, y′)dν(y′)
9

9

9

9

2

H(k0)

=

22

E

k(x, y)−
2

k(x, y′)dµ(y′)−
2

k(x′, y)dµ(x′) +

22

k(x′, y′)dµ(x′)dµ(y′)

F

dν(x)dν(y)

=

22

k(x, y)dµ(x)dµ(y)−
22

k(x, y)dµ(x)dν(y)−
22

k(x, y)dν(x)dν(y)

+

22

k(x, y)dν(x)dν(y)

= MMDµ,k(ν)
2.

A.2 Proof of Theorem 2

First note that the preconditions of Theorem 1 are satisfied. We may therefore take expectations of the bound
obtained in Theorem 1, to obtain that:

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xπ(i,j))

0

1

2
5

H

6

≤ E

3

4 min
1Tw=1
wi≥0

MMDµ,k

C

n
/

i=1

wiδ(xi)

D2
5

6+ E[C2]

;

1 + logm

m

<

, (17)



Optimal Quantisation of Probability Measures Using Maximum Mean Discrepancy

To bound the first expectation we proceed as follows:

E

3

4 min
1Tw=1
wi≥0

MMDµ,k

C

n
/

i=1

wiδ(xi)

D2
5

6 ≤ E

3

4MMDµ,k

C

1

n

n
/

i=1

δ(xi)

D2
5

6 (18)

= E

3

4

1

n2

n
/

i=1

n
/

j=1

k(xi, xj)−
2

n

n
/

i=1

2

k(x, xi) dµ(x) +

22

k(x, y) dµ(x) dµ(y)

5

6

= E

3

4

1

n2

n
/

i=1

n
/

j=1

k(xi, xj)

5

6−
22

k(x, y) dµ(x) dµ(y) (since xi ∼ µ)

= E

3

4

1

n2

n
/

i=1

k(xi, xi) +
1

n2

n
/

i=1

/

j ∕=i

k(xi, xj)

5

6−
22

k(x, y) dµ(x) dµ(y)

= E

I

1

n2

n
/

i=1

k(xi, xi)

J

− 1

n

22

k(x, y) dµ(x) dµ(y) (since xi ∼ µ)

=
1

n
E [k(x1, x1)]−

C2
µ,k

n

=
1

nγ
E
&

log eγk(xi,xi)
'

−
C2

µ,k

n

≤ 1

nγ
logE

&

eγk(xi,xi)
'

−
C2

µ,k

n

≤ 1

nγ
log(C1)−

C2
µ,k

n

≤ 1

nγ
log(C1). (19)

To bound the second expectation we use the fact that C2 = (Cµ,k + Cn,k)
2 ≤ 2C2

µ,k + 2C2
n,k where Cµ,k is

independent of the set {xi}ni=1 to focus only on the term Cn,k. Here we have that

E[C2
n,k] := E

E

max
i=1,...,n

k(xi, xi)

F

= E
E

1

γ
log max

i=1,...,n
eγk(xi,xi)

F

(20)

≤ E

I

1

γ
log

n
/

i=1

eγk(xi,xi)

J

≤ 1

γ
log

C

n
/

i=1

E
&

eγk(xi,xi)
'

D

=
log(nC1)

γ
. (21)

Thus we arrive at the overall bound

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xπ(i,j))

0

1

2
5

H

6

≤ log(C1)

nγ
+ 2

;

C2
µ,k +

log(nC1)

γ

<;

1 + logm

m

<

,

as claimed. □

Remark: We observe that, in the myopic case only (s = 1), one can alternatively recover Theorem 2 as a
consequence of Theorem 2 in Riabiz et al. (2020), once again using the observation that the kernel in (16)
satisfies the preconditions of Theorem 2 in Riabiz et al. (2020).
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A.3 Proof of Theorem 3

The following proof combines parts of the arguments used to establish Theorem 1 and Theorem 2, with additional
notation required to deal with the mini-batching involved.

In a natural extension to the proof of Theorem 1, we define

am := (ms)2 MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xi
π(i,j))

0

1

2

=

m
/

i=1

m
/

i′=1

s
/

j=1

s
/

j′=1

k(xi
π(i,j), x

i′

π(i′,j′))− 2ms

m
/

i=1

s
/

j=1

2

k(xi
π(i,j), x) dµ(x) + (ms)2

22

k(x, x′) dµ(x) dµ(x′)

fm(·) :=
m
/

i=1

s
/

j=1

k(xi
π(i,j), ·)−ms

2

k(·, x) dµ(x)

and note immediately that am = (fm(2H. Then, similarly to Theorem 1, we write a recursive relation

am = am−1 +

s
/

j=1

s
/

j′=1

k(xm
π(m,j), x

m
π(m,j′)) + 2

m−1
/

i=1

s
/

j=1

s
/

j′=1

k(xm
π(m,j), x

i
π(i,j′))− 2ms

s
/

j=1

2

k(xm
π(m,j), x) dµ(x)

(∗)

− 2s

m−1
/

i=1

s
/

j=1

2

k(xi
π(i,j), x) dµ(x) + s2(2m− 1)

22

k(x, x′) dµ(x) dµ(x′)

(∗∗)

.

We will first derive an upper bound for (∗), then one for (∗∗).

Bounding (∗): Noting that at iteration m the algorithm chooses the S ∈ {1, . . . , b}s that minimises

/

j∈S

/

j′∈S

k(xm
j , xm

j′ ) + 2
/

j∈S

s
/

j′=1

m−1
/

i=1

k(xm
j , xi

π(i,j′))− 2ms
/

j∈S

2

k(xm
j , x) dµ(x)

=
/

j∈S

/

j′∈S

k(xm
j , xm

j′ )− 2s
/

j∈S

2

k(xm
j , x) dµ(x) + 2

/

j∈S

fm−1(x
m
j ),

we have that

(∗) = min
S∈{1,...,b}s

3

4

/

j∈S

/

j′∈S

k(xm
j , xm

j′ )− 2s
/

j∈S

2

k(xm
j , x) dµ(x) + 2

/

j∈S

fm−1(x
m
j )

5

6

≤ max
S∈{1,...,b}s

3

4

/

j∈S

/

j′∈S

k(xm
j , xm

j′ )− 2s
/

j∈S

2

k(xm
j , x) dµ(x)

5

6+ 2 min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j )

= max
S∈{1,...,b}s

3

4

/

j∈S

/

j′∈S

k(xm
j , xm

j′ )− 2s
/

j∈S

2

7

k(xm
j , ·), k(x, ·)

8

H dµ(x)

5

6+ 2 min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j ) (22)

≤ max
S∈{1,...,n}b

3

4

/

j∈S

/

j′∈S

k(xm
j , xm

j′ ) + 2s
/

j∈S

9

9k(xm
j , ·)

9

9

H ·
2

(k(x, ·)(H dµ(x)

5

6+ 2 min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j )

(23)

≤ s2 max
j∈{1,...,b}

k(xm
j , xm

j ) + 2s2 max
j∈{1,...,b}

:

k(xm
j , xm

j ) ·
2

,

k(x, x) dµ(x) + 2 min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j )
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≤ s2C2
b,m,k + 2s2Cb,m,k

;

2

k(x, x)dµ(x)

<1/2

+ 2 min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j ) (24)

= s2C2
b,m,k + 2s2Cb.m,kCµ,k + 2 min

S∈{1,...,b}s

/

j∈S

fm−1(x
m
j )

In (22) we used the reproducing property. In (23) we used the Cauchy–Schwarz inequality. In (24) we used
Jensen’s inequality.

To bound the third term, we write

min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j ) = min

S∈{1,...,b}s

=

fm−1,
/

j∈S

k(·, xm
j )

>

H

Define Mm as the convex hull in H of
?

s−1
!

j∈S k(·, xm
j ), S ∈ {1, . . . , b}s

@

. Since the extreme points of Mm

correspond to the vertices (xm
i , . . . , xm

i ) we have that

Mm =

A

n
/

i=1

cik(·, xm
i ) : ci ≥ 0,

n
/

i=1

ci = 1

B

Then we have for any h ∈ Mm

〈fm−1, h〉H =

=

fm−1,

n
/

i=1

cik(·, xm
i )

>

H

=

n
/

i=1

cifm−1(x
m
i )

This linear combination is clearly minimised by taking the xm
j ∈ {xm

i }bi=1 that minimises fm−1(x
m
j ), and taking

the corresponding cj = 1, and all other ci = 0. Now consider the element hm
w =

!b
i=1 w

m
i k(·, xm

i ) for which the
weights are equal to the optimal weight vector wm. Clearly hm

w ∈ Mm. Thus

min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j ) = s · inf

h∈Mm

〈fm−1, h〉H ≤ s · 〈fm−1, h
m
w 〉H.

Bounding (∗∗): Our bound on (∗∗) is actually just an equality:

(∗∗) = −2s

3

4

m−1
/

i=1

s
/

j=1

2

k(xi
π(i,j), x) dµ(x) + s(m− 1)

22

k(x, x′) dµ(x) dµ(x′)

5

6

+ s2
22

k(x, x′) dµ(x) dµ(x′)

= −2s〈fm−1, hµ〉H + s2(hµ(2H

where hµ =
#

k(·, x) dµ(x).

Bound on the Iterates: Combining our bounds on (∗) and (∗∗) leads to the following bound on the iterates:

am ≤ am−1 + s2C2
b,m,k + 2s2Cb,m,kCµ,k + 2s〈fm−1, h

m
w 〉H − 2s〈fm−1, hµ〉H + s2(hµ(2H

= am−1 + s2C2
b,m,k + 2s2Cb,m,kCµ,k + 2s〈fm−1, h

m
w − hµ〉H + s2(hµ(2H

≤ am−1 + s2C2
b,m,k + 2s2Cb,m,kCµ,k + 2s(fm−1(H · (hm

w − hµ(H + s2(hµ(2H
≤ am−1 +

*

s2C2
b,m,k + 2s2Cb,m,kCµ,k + s2C2

µ,k

+

+ 2s
√
am−1 · (hm

w − hµ(H

The last line arises because

(hµ(2H =

22

k(x, x′) dµ(x) dµ(x′) =

22

〈k(x, ·), k(x′, ·)〉 dµ(x) dµ(x′) (25)
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≤
22

|〈k(x, ·), k(x′, ·)〉| dµ(x) dµ(x′)

≤
22

(k(x, ·)(H(k(x′, ·)(H dµ(x) dµ(x′) (26)

=

;

2

,

k(x, x) dµ(x)

<2

≤
2

k(x, x) dµ(x) = C2
µ,k (27)

In (25) we used the reproducing property. In (26) we used the Cauchy–Schwarz inequality. In (27) we used
Jensen’s inequality.

We now note that

(hm
w − hµ(2H = 〈hm

w − hµ, h
m
w − hµ〉H

=

=

b
/

i=1

wm
i k(·, xm

i )−
2

k(·, x) dµ(x),
b

/

i′=1

wm
i′ k(·, xm

i′ )−
2

k(·, x′) dµ(x′)

>

H

=

b
/

i=1

b
/

i′=1

wm
i wm

i′ k(x
m
i , xm

i′ )− 2

b
/

i=1

wm
i

2

k(xm
i , x) dµ(x) +

22

k(x, x′) dµ(x) dµ(x′)

= MMDµ,k

C

b
/

i=1

wm
i δ(xm

i )

D2

=: Φ2
m,

which gives
am ≤ am−1 + s2(Cb,m,k + Cµ,k)

2 + 2s
√
am−1 · Φm.

We then follow a similar argument to Theorem 1 in Riabiz et al. (2020) to establish an induction in am.

Inductive Argument: Let c2m := (Cb,m,k + Cµ,k)
2. We assert

E[am] ≤ (sm)2E[Φ2
m +Km], with Km :=

1

m
(c2m − Φ2

m)

m
/

j=1

1

j

For m = 1, the induction holds since a1 ≤ s2c1. We now assume that E[am−1] ≤ s2(m − 1)2E[Φ2
m−1 +Km−1].

Then

E[am] ≤ E[am−1] + s2E[c2m] + 2sE[√am−1 · Φm]

= E[am−1] + s2E[c2m] + 2sE[√am−1] · E[Φm] (independence of am−1 and Φm)

≤ E[am−1] + s2E[c2m] + 2s
,

E[am−1] · E[Φm] (Jensen’s inequality)

≤ s2(m− 1)2E[Φ2
m−1 +Km−1] + s2E[c2m] + 2s2(m− 1)E[Φm]

:

E[Φ2
m−1 +Km−1]

≤ s2(m− 1)2E[Φ2
m +Km−1] + s2E[c2m] + 2s2(m− 1)E[Φm]

,

E[Φ2
m +Km−1] (since Φm−1

d
= Φm)

≤ s2(m− 1)2E[Φ2
m +Km−1] + s2E[c2m] + 2s2(m− 1)E[Φ2

m]1/2
,

E[Φ2
m +Km−1] (Jensen’s inequality)

≤ s2
(

(m− 1)2E[Φ2
m +Km−1] + E[c2m] + (m− 1)(2E[Φ2

m] + E[Km−1])
)

(28)

= s2E
(

(m2 − 1)Φ2
m +m(m− 1)Km−1 + c2m

)

= s2E
E

(m2 − 1)Φ2
m +m(c2m−1 − Φ2

m−1)

m−1
/

j=1

1

j
+ c2m

F

= s2E
E

(m2 − 1)Φ2
m +m(c2m−1 − Φ2

m−1)

m
/

j=1

1

j
−m(c2m−1 − Φ2

m−1)
1

m
+ c2m

F

= s2E
E

(m2 − 1)Φ2
m +m(c2m−1 − Φ2

m−1)

m
/

j=1

1

j
−m(c2m − Φ2

m)
1

m
+ c2m

F

(since cm−1
d
= cm, Φm−1

d
= Φm)
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= s2E
E

m2Φ2
m +m(c2m−1 − Φ2

m−1)

m
/

j=1

1

j

F

= (sm)2E[Φ2
m +Km]

which proves the induction. The line (28) follows from the second by the fact that for any a, b > 0, it holds that
2a

√
a2 + b ≤ 2a2 + b.

Overall Bound: We now show that Φ2
m ≤ c2m, by writing

Φ2
m = (hm

w − hµ(2H ≤ (hm
w (2H + 2(hm

w (H · (hµ(H + (hµ(2H

and noting that since
!n

i=1 w
m
i = 1, it holds that

(hm
w (2H =

b
/

i=1

b
/

i′=1

wm
i wm

i′ k(x
m
i , xm

i′ ) ≤ C2
b,m,k.

We have already shown that (hµ(2 ≤ C2
µ,k, thus it follows that Φ2

m ≤ C2
b,m,k + 2Cb,m,kCµ,k + C2

µ,k = c2m as

required. Using this bound in conjunction with the elementary series inequality
!m

j=1 j
−1 ≤ (1+logm), we have

Km ≥ 0 and

Km =
1

m
(c2m − Φ2

m)

m
/

j=1

1

j
≤ 1

m
c2m

m
/

j=1

1

j
≤

;

1 + logm

m

<

c2m

An identical argument to that used between (20) and (21) shows that

E[C2
b,m,k] =

log(nC1)

γ

and therefore

E[c2m] ≤ 2C2
µ,k + 2E[C2

b,m,k] ≤ 2C2
µ,k +

2 log(bC1)

γ
.

An identical argument to (18)-(19) gives that

E[Φ2
m] ≤ log(C1)

bγ

From this the theorem follows by noting

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xi
π(i,j))

0

1

2
5

H

6

=
E[am]

(sm)2
≤ E[Φ2

m] +

;

1 + logm

m

<

E[c2m]

≤ log(C1)

bγ
+ 2

;

C2
µ,k +

log(bC1)

γ

<;

1 + logm

m

<

.

□
This argument relied on independence between mini-batches and therefore it may not easily generalise to the
MCMC context.

Remarks: We observe that, in the myopic case only (s = 1), one can alternatively recover Theorem 3 as a
consequence of Theorem 6 in Chen et al. (2019), once again using the observation that the kernel in (16) satisfies
the preconditions of Theorem 6 in Chen et al. (2019).

The argument used to prove Theorem 3 relies on independence between mini-batches and therefore it may not
easily generalise to the MCMC context, in which this is unlikely to be true. Theorem 7 in Chen et al. (2019)
considered a particular form of dependence between mini-batches (once again, only for the case s = 1), but this
result does not directly apply to mini-batches sampled from MCMC output.
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A.4 Proof of Theorem 4

The argument below is almost identical to that used in Theorem 2 of Riabiz et al. (2020), with most of the effort
required to handle the non-myopic optimisation having already been performed in Theorem 1. In particular, it
relies on the following technical result:

Lemma 1 (Lemma 3 in Riabiz et al. (2020)). Let X be a measurable space and let µ be a probability distribution
on X . Let k : X ×X → R be a reproducing kernel with

#

k(x, ·)dµ(x) = 0 for all x ∈ X . Consider a µ-invariant,
time-homogeneous reversible Markov chain (xi)i∈N ⊂ X generated using a V -uniformly ergodic transition kernel,
such that V (x) ≥

,

k(x, x) for all x ∈ X , with parameters R ∈ [0,∞) and ρ ∈ (0, 1) as in (7). Then we have
that

n
/

i=1

/

r∈{1,...,n}\{i}

E [k(xi, xr)] ≤ C3

n−1
/

i=1

E
&

,

k(xi, xi)V (Xi)
'

with C3 := 2Rρ
1−ρ . □

The proof starts in a similar manner to the proof of Theorem 2, taking expectations of the bound obtained in
Theorem 1 to arrive at (17).

An identical argument to that used in the proof of Theorem 2 allows us to bound

E[C2] ≤ 2

;

C2
µ,k +

log(nC1)

γ

<

.

Thus it remains to bound the first term in (17) under the assumptions that we have made on the Markov chain
(xi)i∈N. To this end, we have that

E

3

4 min
1Tw=1
wi≥0

MMDµ,k

C

n
/

i=1

wiδ(xi)

D2
5

6 ≤ E

3

4MMDµ,k

C

1

n

n
/

i=1

δ(xi)

D2
5

6

= E

3

4

1

n2

n
/

i=1

n
/

j=1

k(xi, xj)−
2

n

n
/

i=1

2

k(x, xi) dµ(x) +

22

k(x, y) dµ(x) dµ(y)

5

6

= E

3

4

1

n2

n
/

i=1

n
/

j=1

k(xi, xj)

5

6 (since
#

k(x, ·)dµ(x) = 0)

= E

I

1

n2

n
/

i=1

k(xi, xi)

J

+ E

3

4

1

n2

n
/

i=1

/

j ∕=i

k(xi, xj)

5

6 . (29)

The first term in (29) is handled as follows:

1

n2

n
/

i=1

E [k(xi, xi)] =
1

n2

n
/

i=1

E
E

1

γ
log eγk(xi,xi)

F

≤ 1

γn2

n
/

i=1

log
$

E
&

eγk(xi,xi)
'%

≤ log(C1)

γn

The second term in (29) can be controlled using Lemma 1:

E

3

4

1

n2

n
/

i=1

/

j ∕=i

k(xi, xj)

5

6 ≤ C

n2

n−1
/

i=1

E
&

,

k(xi, xi)V (Xi)
'

≤ C3

n2
(n− 1)C2 ≤ C2C3

n
.

Thus we arrive at the overall bound

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xπ(i,j))

0

1

2
5

H

6

≤ log(C1)

nγ
+

C2C3

n
+ 2

;

C2
µ,k +

log(nC1)

γ

<;

1 + logm

m

<

,

as claimed. □



Optimal Quantisation of Probability Measures Using Maximum Mean Discrepancy

B Semidefinite Relaxation

In this supplement we briefly explain how to construct a relaxation of the discrete optimisation problem (5).
The standard technique for relaxation of a quadratic programme of this form is to construct an approximating
semidefinite programme (SDP). This not only convexifies the problem but also replaces a quadratic problem in
v with a linear problem in a semidefinite matrix M . To simplify the presentation we consider5 the BQP setting
of Remark 1, so that v ∈ {0, 1}n. We also employ a change of variable ṽj := 2vj − 1, so that ṽ ∈ {−1, 1}n. By
analogy with (4) we recast an optimal subset π as the solution to the following BQP.

argmin
ṽ∈{−1,1}n

ṽ⊤Kṽ + 2(1⊤K + ci⊤j )ṽ, s.t. 1⊤ṽ = 2s− n. (30)

The relaxation treats ṽ as a continuous variable whose feasible set is the entire convex hull of {−1, 1}n. Define
Ṽ = ṽṽ⊤ and then relax this non-convex equality, so that Ṽ − ṽṽ⊤ ≽ 0 rather than the Ṽ − ṽṽ⊤ = 0. Then
rewrite this as a Schur complement, using the relation:

M :=

;

1 ṽ⊤

ṽ Ṽ

<

≽ 0 ⇐⇒ Ṽ − ṽṽ⊤ ≽ 0

Consider now the two (n+ 1)× (n+ 1) matrices constructed as follows

A=

;

1⊤K 1+ 2ci⊤j 1⊤K + ci⊤j
K 1+ cij K

<

B=

;

0 1
21

⊤
1
21 00⊤

<

The SDP relaxation of (30) is then

minimise M •A s.t. diag(M) = 1

B •M = 2s− n

M ≽ 0

(31)

(X • Y ≡
!!n

i,j=1 XijYij). Note that (31) collapses to (30) when Ṽ = ṽṽ⊤ and ṽ ∈ {−1, 1}n are enforced.
Note that if the cardinality constraint B •M = 2s− n is omitted, then (31) is equivalent to the classical graph
partitioning problem MAX-CUT (Goemans and Williamson, 1995).

The SDP (31) is linear in M and is soluble to within any ε > 0 of the true optimum in polynomial time. Its
solution M∗, however, only solves the BQP (30) if Ṽ ∗ = ṽ∗ṽ∗⊤, or equivalently rank(M∗) = 1. This will not be
true in general and the second part of a relaxation procedure is to round the output ṽ∗ ∈ [−1, 1]n to a feasible
vector ṽ ∈ {−1, 1}n for the BQP. Goemans and Williamson (1995) introduced a popular randomised rounding
approach for MAX-CUT, and for the following exploratory simulations we adopted a similar approach. This
starts by performing an incomplete Cholesky decomposition Ṽ ∗ = UU⊤ with rank(U) = r. Since diag(Ṽ ∗) = 1,
the columns of U all lie on the unit r-sphere.

To select exactly m points we draw a random hyperplane through the origin of this sphere and translate it affinely
until exactly m points are separated from the rest (it is this translation that is a modification of the original
approach for non-cardinality constrained problems, and which means the analysis of Goemans and Williamson
(1995) is not directly applicable). The resulting approximations are presented only as an empirical benchmark
for Algorithms 1-3 and the detailed analysis of rounding procedures is well beyond the scope of this work.

We also find improved output by drawing R > 1 points on the r-sphere and choosing the one for which the
points separated off are best, in the sense of lowest cumulative KSD. This process imposes trivial additional
computational cost. The semi-definite optimisations are performed using the Python optimisation package MOSEK.

Figure 5 shows that the semi-definite relaxation approach can be competitive in time-adjusted KSD. Each line
in left pane represents the drawing of 1000 samples. The non-relaxed and best-of-50 SDR approaches closely
mirror each other in time-adjusted KSD, though the non-relaxed approach is more efficient in that it achieves the
same KSD in the same time with fewer samples chosen. Choosing R > 1 imposes little additional computation
time, leading to a performance improvement for R = 50 over R = 10, though past a certain point (visible here
for R = 200) this additional computation does become significant and harms performance.

5The more general IQP setting, in which candidate points can be repeatedly selected, can similarly be cast as an SDP
by proceeding with s copies of the candidate set and v ∈ {0, 1}ns.
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Figure 5: KSD vs. wall-clock time, and time-adjusted KSD vs. number of selected samples, for the 4-dim
Lotka–Volterra model also used in Section 4, and with the same kernel specification. We draw 1000 samples
using batch-size b = 100 and choosing s = 10 points simultaneously at each iteration. The four lines refer to
the non-relaxed method (generated using the same code as in Figure 3), as well as the approach employing
semi-definite relaxation (taking the best of 10, 50 and 200 point selections, determined by drawing that many
points on the sphere).

C Choice of Kernel

As with all kernel-based methods, the specification of the kernel itself is of key importance. For the MMD
experiments in Section 4.1, we employed the squared-exponential kernel k(x, y; ℓ) = exp(− 1

2ℓ
−2(x − y(2), and

for the KSD experiments in Section 4.2 we followed Chen et al. (2018, 2019) and Riabiz et al. (2020) and used
the inverse multi-quadric kernel k(x, y; ℓ) = (1 + ℓ−2(x − y(2)−1/2 as the ‘base kernel’ k in (3) from which the
compound Stein kernel kµ is built up. The latter choice ensures that, under suitable conditions on µ, KSD
controls weak convergence to µ in P(Rd), meaning that if MMDµ,kµ

(ν) → 0 then ν ⇒ µ (Gorham and Mackey,
2017, Thm. 8).

The next consideration is the length scale ℓ. There are several possible approaches. For the simulations in
Sections 4.1 and 4.2, we use the median heuristic (Garreau et al., 2017). The length-scale ℓ̂ is calculated from

the dataset themselves, using the formula ℓ̂ =
:

1
2Med{(xi − xj(2}. The indices i, j can run over the entire

dataset, or more commonly in practice, a uniformly-sampled subset of it. For the large datasets in Section 4, we
use 1000 points to calculate ℓ̂.

To explore the impact of the choice of length scale on the approximations that our methods produce, in Figure
6 we start with ℓ̃ = 0.25 (the value used to produce Figure 1 in the main text) and now vary this parameter,
considering 0.1ℓ̃ and 10ℓ̃. The difference in the quality of the approximation of ν to µ is immediately visually
evident, even for such a simple model. It appears that, at least in this instance, the median heuristic is helpful
in avoiding pathologies that can occur when an inappropriate length-scale is used.
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Figure 6: Investigating the role of the length-scale parameter ℓ in the squared-exponential kernel k(x, y; ℓ) =
exp(− 1

2ℓ
−2(x − y(2). Model and simulation set-up as in Figure 1. Here 12 representative points were selected

using the myopic method (left column), a non-myopic method (centre column), and by simultaneous selection
of all 12 points (right column). The kernel length-scale parameter ℓ̃ set to 0.025 (top row), 0.25 (middle row; as
Figure 1) and 2.5 (bottom row).


